期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Positive temperature coefficient of resistivity effects of semiconducting (Bi(1/2)Na(1/2)) TiO_3-CaTiO_3-BaTiO_3 ceramics sintered in air atmosphere
1
作者 马季 朱兴文 +3 位作者 张芳 徐琼 姜文中 周晓 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期452-455,共4页
Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT... Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed. 展开更多
关键词 lead-free materials positive temperature coefficient of resistivity (PTCR) (Bi 1/2 Na 1/2) TiO 3 CaTiO 3 negative temperature coefficient (NTC) effect
下载PDF
Resistivity-Temperature Behavior of CB-Filled HDPE Foaming Composites 被引量:4
2
作者 LI Ji-xin ZHANG Guo +2 位作者 LI Zhuo-shi WANG Xin-lei LIU Xiu-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第2期215-219,共5页
High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the ... High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect. 展开更多
关键词 Resistivity-temperature behavior Carbon black High-density polyethylene Foam Positive temperaturecoefficient(PYC) effect negative temperature coefficient(NYC) effect
下载PDF
PTC/NTC Behavior of PVDF Composites Filled with GF and CF 被引量:3
3
作者 WANG Xin-lei ZHANG Guo LI Ji-xin LI Zhuo-shi LIU Zhan-fang LIU Xiu-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期648-652,共5页
Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polym... Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polymer matrix were studied by scanning electron microscope(SEM)and optical microscope(OM)observations,respectively. The differences in the positive temperature coefficient(PTC)effects of the composites were mainly attributed to inter-fiber contact ability.The elimination of the negative temperature coefficient(NTC)effect for CF/PVDF composite was because of an increase in the viscosity of the polymer matrix.With the same filler content,CF could be more effective,to eliminate the NTC effect when compared with GF.Addition of 2%CF(mass fraction)in the PVDF composite with 7%GF(mass fraction)could effectively eliminate the NTC phenomenon of the composite. 展开更多
关键词 Polyvinylidene fluoride Graphited fiber Carbon fiber Positive temperature coefficient effect negative temperature coefficient effect
下载PDF
Conductive Behaviors of Carbon Nanofibers Reinforced Epoxy Composites
4
作者 梅启林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期139-142,共4页
By means of ultrasonic dispersion, carbon nanofibers reinforced epoxy resin composite was prepared in the lab, the electrical conductivity of composite with different carbon nanofibers loadings were studied, also the ... By means of ultrasonic dispersion, carbon nanofibers reinforced epoxy resin composite was prepared in the lab, the electrical conductivity of composite with different carbon nanofibers loadings were studied, also the voltage-current relationship, resistance-temperature properties and mechano-electric effect were investigated. Results show that the resistivity of composite decreases in geometric progression with the increasing of carbon nanofibers, and the threshold ranges between 0.1 wt%-0.2 wt%. The voltage-current relationship is in good conformity with the Ohm's law, both positive temperature coefficient and negative temperature coefficient can be found at elevated temperature. In the course of stretching, the electrical resistance of the composites increases with the stress steadily and changes sharply near the breaking point, which is of importance for the safety monitor and structure health diagnosis. 展开更多
关键词 carbon nanofibers positive temperature coefficient negative temperature coefficient mechano-electric effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部