By means of Logic symmetric relation,the single neighboring Logic path for Ndimensions Boolean ordered set is solved.A new method of determining any logic neighboringsubset in limited dimension is proposed.Its results...By means of Logic symmetric relation,the single neighboring Logic path for Ndimensions Boolean ordered set is solved.A new method of determining any logic neighboringsubset in limited dimension is proposed.Its results are intuitional and realizable for computer.展开更多
贝叶斯网络由于其强大的不确定性推理能力和因果可表示性越来越受到研究者的关注。从数据中学习一个贝叶斯网络结构被称为NP-hard问题。其中,针对K2算法强依赖于变量拓扑序的问题,提出了一种组合变量邻居集和v-结构信息的K2改进学习方法...贝叶斯网络由于其强大的不确定性推理能力和因果可表示性越来越受到研究者的关注。从数据中学习一个贝叶斯网络结构被称为NP-hard问题。其中,针对K2算法强依赖于变量拓扑序的问题,提出了一种组合变量邻居集和v-结构信息的K2改进学习方法TSK2(Two-Step Search Strategy of K2)。该方法有效减小了序空间搜索规模,同时避免了过早陷入局部最优。具体而言,该方法在约束算法定向规则的启示下,借助识别的v-结构和邻居集信息可靠调整汇点的邻居在序中的位置;其次,在贝网基本组成结构的启发下,借助变量邻居集信息,通过执行顺连、分连、汇连3个基本结构的搜索,准确修正父节点与子节点的序位置,获得最优序列。实验结果表明,在Asia和Alarm网络数据集上,与对比方法相比,所提算法的准确率得到显著提升,可以获得更准确的网络结构。展开更多
密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致...密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。展开更多
文摘By means of Logic symmetric relation,the single neighboring Logic path for Ndimensions Boolean ordered set is solved.A new method of determining any logic neighboringsubset in limited dimension is proposed.Its results are intuitional and realizable for computer.
文摘贝叶斯网络由于其强大的不确定性推理能力和因果可表示性越来越受到研究者的关注。从数据中学习一个贝叶斯网络结构被称为NP-hard问题。其中,针对K2算法强依赖于变量拓扑序的问题,提出了一种组合变量邻居集和v-结构信息的K2改进学习方法TSK2(Two-Step Search Strategy of K2)。该方法有效减小了序空间搜索规模,同时避免了过早陷入局部最优。具体而言,该方法在约束算法定向规则的启示下,借助识别的v-结构和邻居集信息可靠调整汇点的邻居在序中的位置;其次,在贝网基本组成结构的启发下,借助变量邻居集信息,通过执行顺连、分连、汇连3个基本结构的搜索,准确修正父节点与子节点的序位置,获得最优序列。实验结果表明,在Asia和Alarm网络数据集上,与对比方法相比,所提算法的准确率得到显著提升,可以获得更准确的网络结构。
文摘密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。