The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C...The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.展开更多
The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
BACKGROUND Grasping the underlying mechanisms of Alzheimer's disease(AD)is still a work in progress,and existing diagnostic techniques encounter various obstacles.Therefore,the discovery of dependable biomarkers i...BACKGROUND Grasping the underlying mechanisms of Alzheimer's disease(AD)is still a work in progress,and existing diagnostic techniques encounter various obstacles.Therefore,the discovery of dependable biomarkers is essential for early detection,tracking the disease's advancement,and steering treatment strategies.AIM To explore the diagnostic potential of serum CXCL12,sCD22,Lp-PLA2,and their ratios in AD,aiming to enhance early detection and inform targeted treatment strategies.METHODS The study was conducted in Dongying people's Hospital from January 2021 to December 2022.Participants included 60 AD patients(AD group)and 60 healthy people(control group).Using a prospective case-control design,the levels of CXCL12,sCD22 and Lp-PLA2 and their ratios were detected by enzyme-linked immunosorbent assay kit in the diagnosis of AD.The differences between the two groups were analyzed by statistical methods,and the corresponding ratio was constructed to improve the specificity and sensitivity of diagnosis.RESULTS Serum CXCL12 levels were higher in the AD group(47.2±8.5 ng/mL)than the control group(32.8±5.7 ng/mL,P<0.001),while sCD22 levels were lower(14.3±2.1 ng/mL vs 18.9±3.4 ng/mL,P<0.01).Lp-PLA2 levels were also higher in the AD group(112.5±20.6 ng/mL vs 89.7±15.2 ng/mL,P<0.05).Significant differences were noted in CXCL12/sCD22(3.3 vs 1.7,P<0.001)and Lp-PLA-2/sCD22 ratios(8.0 vs 5.2,P<0.05)between the groups.Receiver operating characteristic analysis confirmed high sensitivity and specificity of these markers and their ratios in distinguishing AD,with area under the curves ranging from CONCLUSION Serum CXCL12 and Lp-PLA2 levels were significantly increased,while sCD22 were significantly decreased,as well as increases in the ratios of CXCL12/sCD22 and Lp-PLA2/sCD22,are closely related to the onset of AD.These biomarkers and their ratios can be used as potential diagnostic indicators for AD,providing an important clinical reference for early intervention and treatment.展开更多
The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti eleme...The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.展开更多
BACKGROUND Phospholipase A2(PLA2)enzymes are pivotal in various biological processes,such as lipid mediator production,membrane remodeling,bioenergetics,and maintaining the body surface barrier.Notably,these enzymes p...BACKGROUND Phospholipase A2(PLA2)enzymes are pivotal in various biological processes,such as lipid mediator production,membrane remodeling,bioenergetics,and maintaining the body surface barrier.Notably,these enzymes play a significant role in the development of diverse tumors.AIM To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma(CCA).METHODS We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus.The study identified differentially expressed genes between tumor tissues and adjacent normal tissues,with a focus on PLA2G2A and PLA2G12B.Gene Set Enrichment Analysis was utilized to pinpoint associated pathways.Moreover,relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted,and their correlation with the prognosis of CCA was evaluated.RESULTS PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA,manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals.Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients.Additionally,the study delineated pathways and miRNAs associated with these genes.CONCLUSION Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA.The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA,and their expression levels are indicative of prognosis,underscoring their potential utility in clinical settings.展开更多
Objective:To explore the neuroprotective effects of the Shaoyao Gancao decoction(SGD)against excitatory damage in PC12 cells and the role of the Src-NR2-nNOS pathway mediation by SGD in regulatingγ-aminobutyric acid(...Objective:To explore the neuroprotective effects of the Shaoyao Gancao decoction(SGD)against excitatory damage in PC12 cells and the role of the Src-NR2-nNOS pathway mediation by SGD in regulatingγ-aminobutyric acid(GABA)-glutamate(Glu)homeostasis.Methods: N-Methyl-d-aspartic acid(NMDA)was used to establish a PC12 cell excitability injury model.To investigate the neuroprotective effect of SGD,a cell counting kit-8(CCK-8)assay was used to determine PC12 cell viability,Annexin V/Propidium Iodide(Annexin V/PI)double staining was used to determine PC12 cell apoptosis,and Ca^(2+)concentration was observed using laser confocal microscopy.GABA receptor agonists and antagonists were used to analyze the neuroprotective interactions betweenγ-aminobutyric acid(GABA)and NMDA receptors.Additionally,molecular biology techniques were used to determine mRNA and protein expression in the Src-NR2-nNOS pathway.We analyzed the correlations between the regulatory sites of GABA and NMDA interactions,excitatory neurotoxicity,and brain damage at the molecular level.Results: NMDA excitotoxic injury manifested as a significant decrease in cell activity,increased apoptosis and caspase-3 protein expression,and a significant increase in intracellular Ca^(2+)concentration.Administration of SGD,a GABAA receptor agonist(muscimol),or a GABAB receptor agonist(baclofen)decreased intracellular Ca^(2+)concentrations,attenuated apoptosis,and reversed NMDA-induced upregulation of caspase-3,Src,NMDAR2A,NMDAR2B,and nNOS.Unexpectedly,a GABA_(A)receptor antagonist(bicuculline)and a GABA_(B)receptor antagonist(saclofen)failed to significantly increase excitatory neurotoxicity.Conclusions: Taken together,these results not only provide an experimental basis for SGD administration in the clinical treatment of central nervous system injury diseases,but also suggest that the Src-NR2A-nNOS pathway may be a valuable target in excitotoxicity treatment.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment fo...BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype.展开更多
Vitamin B12 deficiency is a significant concern among patients with end-stage renal disease undergoing dialysis.However,there hasn’t been extensive research conducted on this particular patient group.The reported inc...Vitamin B12 deficiency is a significant concern among patients with end-stage renal disease undergoing dialysis.However,there hasn’t been extensive research conducted on this particular patient group.The reported incidence rates vary widely,ranging from 20%to 90%,reflecting the complexity of its diagnosis.Dialysis patients often face multiple nutritional deficiencies,including a lack of essential vitamins,due to factors such as dietary restrictions,impaired absorption,and nutrient loss during dialysis.Diagnosing vitamin B12 deficiency in these patients is challenging,and addressing it is crucial to prevent complications and improve their overall quality of life.This review paper delves into the available body of evidence on vitamin B12 deficiency in dialysis patients,examining the contributing risk factors,diagnostic challenges,potential complications,and available treatment options.It provides a well-rounded perspective on the topic,making it a valuable resource for researchers,healthcare practitioners,and policymakers interested in addressing the nutritional needs of dialysis patients.展开更多
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022MB106national training program of innovation and entrepreneurship for undergraduates,Grant/Award Number:202210424099National Natural Science Foundation of China,Grant/Award Numbers:21601067,21701057,21905147。
文摘The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.
基金supported by the National Key Research and Development Project(No.2022YFA1602301)the National Natural Science Foundation of China(Nos.U2267205,12275361,12125509,12222514,11961141003,12005304)the CAST Young Talent Support Plan,the CNNC Science Fund for Talented Young Scholars,and the Continuous-Support Basic Scientific Research Project.
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
文摘BACKGROUND Grasping the underlying mechanisms of Alzheimer's disease(AD)is still a work in progress,and existing diagnostic techniques encounter various obstacles.Therefore,the discovery of dependable biomarkers is essential for early detection,tracking the disease's advancement,and steering treatment strategies.AIM To explore the diagnostic potential of serum CXCL12,sCD22,Lp-PLA2,and their ratios in AD,aiming to enhance early detection and inform targeted treatment strategies.METHODS The study was conducted in Dongying people's Hospital from January 2021 to December 2022.Participants included 60 AD patients(AD group)and 60 healthy people(control group).Using a prospective case-control design,the levels of CXCL12,sCD22 and Lp-PLA2 and their ratios were detected by enzyme-linked immunosorbent assay kit in the diagnosis of AD.The differences between the two groups were analyzed by statistical methods,and the corresponding ratio was constructed to improve the specificity and sensitivity of diagnosis.RESULTS Serum CXCL12 levels were higher in the AD group(47.2±8.5 ng/mL)than the control group(32.8±5.7 ng/mL,P<0.001),while sCD22 levels were lower(14.3±2.1 ng/mL vs 18.9±3.4 ng/mL,P<0.01).Lp-PLA2 levels were also higher in the AD group(112.5±20.6 ng/mL vs 89.7±15.2 ng/mL,P<0.05).Significant differences were noted in CXCL12/sCD22(3.3 vs 1.7,P<0.001)and Lp-PLA-2/sCD22 ratios(8.0 vs 5.2,P<0.05)between the groups.Receiver operating characteristic analysis confirmed high sensitivity and specificity of these markers and their ratios in distinguishing AD,with area under the curves ranging from CONCLUSION Serum CXCL12 and Lp-PLA2 levels were significantly increased,while sCD22 were significantly decreased,as well as increases in the ratios of CXCL12/sCD22 and Lp-PLA2/sCD22,are closely related to the onset of AD.These biomarkers and their ratios can be used as potential diagnostic indicators for AD,providing an important clinical reference for early intervention and treatment.
基金the National Key Research and De-velopment Program of China(Grant No.2021YFB3500300)the National Natural Science Foundation of China(Grant No.51931007)the Program of Top Disciplines Construc-tion in Beijing(Grant No.PXM2019014204500031).
文摘The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.
基金Supported by the Key Specialty Construction Project of Shanghai Pudong New Area Health Commission,No.PWZzk2022-17Shanghai East Hospital Clinical Research Project,No.DFLC2022019and the Featured Clinical Discipline Project of Shanghai Pudong District,No.PWYts2021-06.
文摘BACKGROUND Phospholipase A2(PLA2)enzymes are pivotal in various biological processes,such as lipid mediator production,membrane remodeling,bioenergetics,and maintaining the body surface barrier.Notably,these enzymes play a significant role in the development of diverse tumors.AIM To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma(CCA).METHODS We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus.The study identified differentially expressed genes between tumor tissues and adjacent normal tissues,with a focus on PLA2G2A and PLA2G12B.Gene Set Enrichment Analysis was utilized to pinpoint associated pathways.Moreover,relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted,and their correlation with the prognosis of CCA was evaluated.RESULTS PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA,manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals.Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients.Additionally,the study delineated pathways and miRNAs associated with these genes.CONCLUSION Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA.The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA,and their expression levels are indicative of prognosis,underscoring their potential utility in clinical settings.
基金supported by the National Natural Science Foundation of China(82074036).
文摘Objective:To explore the neuroprotective effects of the Shaoyao Gancao decoction(SGD)against excitatory damage in PC12 cells and the role of the Src-NR2-nNOS pathway mediation by SGD in regulatingγ-aminobutyric acid(GABA)-glutamate(Glu)homeostasis.Methods: N-Methyl-d-aspartic acid(NMDA)was used to establish a PC12 cell excitability injury model.To investigate the neuroprotective effect of SGD,a cell counting kit-8(CCK-8)assay was used to determine PC12 cell viability,Annexin V/Propidium Iodide(Annexin V/PI)double staining was used to determine PC12 cell apoptosis,and Ca^(2+)concentration was observed using laser confocal microscopy.GABA receptor agonists and antagonists were used to analyze the neuroprotective interactions betweenγ-aminobutyric acid(GABA)and NMDA receptors.Additionally,molecular biology techniques were used to determine mRNA and protein expression in the Src-NR2-nNOS pathway.We analyzed the correlations between the regulatory sites of GABA and NMDA interactions,excitatory neurotoxicity,and brain damage at the molecular level.Results: NMDA excitotoxic injury manifested as a significant decrease in cell activity,increased apoptosis and caspase-3 protein expression,and a significant increase in intracellular Ca^(2+)concentration.Administration of SGD,a GABAA receptor agonist(muscimol),or a GABAB receptor agonist(baclofen)decreased intracellular Ca^(2+)concentrations,attenuated apoptosis,and reversed NMDA-induced upregulation of caspase-3,Src,NMDAR2A,NMDAR2B,and nNOS.Unexpectedly,a GABA_(A)receptor antagonist(bicuculline)and a GABA_(B)receptor antagonist(saclofen)failed to significantly increase excitatory neurotoxicity.Conclusions: Taken together,these results not only provide an experimental basis for SGD administration in the clinical treatment of central nervous system injury diseases,but also suggest that the Src-NR2A-nNOS pathway may be a valuable target in excitotoxicity treatment.
基金Supported by National Natural Science Foundation of China,No.82260581Guangxi Zhuang Autonomous Region Health Committee Scientific Research Project,No.Z20201147+3 种基金Guangxi Medical University Education and Teaching Reform Project,No.2021XJGA02Undergraduate Teaching Reform Project of Guangxi Higher Education,No.2023JGB163Guangxi Medical University Teacher Teaching Ability Development Project,No.2202JFA20China Undergraduate Innovation and Entrepreneurship Training Program,No.S202310598170.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype.
文摘Vitamin B12 deficiency is a significant concern among patients with end-stage renal disease undergoing dialysis.However,there hasn’t been extensive research conducted on this particular patient group.The reported incidence rates vary widely,ranging from 20%to 90%,reflecting the complexity of its diagnosis.Dialysis patients often face multiple nutritional deficiencies,including a lack of essential vitamins,due to factors such as dietary restrictions,impaired absorption,and nutrient loss during dialysis.Diagnosing vitamin B12 deficiency in these patients is challenging,and addressing it is crucial to prevent complications and improve their overall quality of life.This review paper delves into the available body of evidence on vitamin B12 deficiency in dialysis patients,examining the contributing risk factors,diagnostic challenges,potential complications,and available treatment options.It provides a well-rounded perspective on the topic,making it a valuable resource for researchers,healthcare practitioners,and policymakers interested in addressing the nutritional needs of dialysis patients.