The interactions of chlorogenic acid (CA), neochlorogenic acid (NCA) and cryptochlorogenic acid (CCA) with lysozyme (LYSO) were investigated in physiological buffer by fluorescence spectroscopy. The mechanism ...The interactions of chlorogenic acid (CA), neochlorogenic acid (NCA) and cryptochlorogenic acid (CCA) with lysozyme (LYSO) were investigated in physiological buffer by fluorescence spectroscopy. The mechanism study indicated that CA, NCA and CCA could strongly quench the intrinsic fluorescence of LYSO through static quenching procedures with one binding site. Thermodynamic data show that the major force in the binding processes of CA to LYSO was hydrophobic interactions; for NCA, it was the hydrogen bonds and van der Waals forces, as for the CCA system, the mainly force is electrostatic force.展开更多
文摘The interactions of chlorogenic acid (CA), neochlorogenic acid (NCA) and cryptochlorogenic acid (CCA) with lysozyme (LYSO) were investigated in physiological buffer by fluorescence spectroscopy. The mechanism study indicated that CA, NCA and CCA could strongly quench the intrinsic fluorescence of LYSO through static quenching procedures with one binding site. Thermodynamic data show that the major force in the binding processes of CA to LYSO was hydrophobic interactions; for NCA, it was the hydrogen bonds and van der Waals forces, as for the CCA system, the mainly force is electrostatic force.