Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic ker...Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective.展开更多
Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear, p75 neur...Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear, p75 neurotrophin receptor (p75NTR) plays an important role in the regulation of peripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75NTR expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75NTR mRNA and protein expression in the Schwann cells at the anastomotic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote peripheral nerve regeneration by up-regulating p75NTR expression in Schwann cells.展开更多
Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens w...Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.展开更多
We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF w...We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF was found to be present in the extracellular space and cytoplasm. In addition, mature NGF was expressed in extracellular space, but with a very low signal. In ischemic cortex only, proNGF was significantly decreased, reaching a minimal level at 1 day. Mature NGF was increased at 4 hours, then reached a minimal level at 3 days. The p75 neurotrophin receptor (p75NTR) was significantly decreased after ischemia, and increased at 3 days after ischemia. These results confirmed that proNGF was the predominant form of NGF during the pathological process of cerebral ischemia-repeffusion injury. In addition, our findings suggest that ischemic injury may influence the conversion of proNGF to mature NGF, and that proNGF/p75NTR may be involved in reperfusion injury.展开更多
Objective To investigate the regulatory effects of nerve growth factor (NGF) on basal and capsaicin-induced release of neuropeptide substance P (SP) in primary cultured embryonic rat dorsal root ganglion (DRG) n...Objective To investigate the regulatory effects of nerve growth factor (NGF) on basal and capsaicin-induced release of neuropeptide substance P (SP) in primary cultured embryonic rat dorsal root ganglion (DRG) neurons. Methods DRGs were dissected from 15-day-old embryonic Wistar rats. DRG neurons were dissociated and cultured, and then exposed to different concentrations of NGF (10 ng/mL, 30 ng/mL, or 100 ng/mL) for 72 h. The neurons cultured in media without NGF served as control. RT-PCR were used for detecting the mRNAs of SP and vanilloid receptor 1 (VR1) in the DRG neurons. The SP basal and capsaicin (100 nmol/L)-induced release in the culture were measured by radioimmunoassay (RIA). Results SP mRNA and VR1 mRNA expression increased in primary cultured DRG neurons in a dose-dependent manner of NGF. Both basal release and capsaicin-evoked release of SP increased in NGF-treated DRG neurons compared with in control group. The capsaicin-evoked release of SP also increased in a dose-dependent manner of NGF. Conclusion NGF may promote both basal release and capsaicin-evoked release of SP. NGF might increase the sensitivity of nociceptors by increasing the SP mRNA or VR1 mRNA.展开更多
Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood ...Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. Methods The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P 〈 0.05. Results The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P 〈 0.05). Conclusion NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.展开更多
Objective: to obtain the high purified and active nerve growth factor (NGF) from mouse submaxillary glands. Methods: NGF was prepared from mouse submaxillary glands by the way of elution with CM 52 column. The molecul...Objective: to obtain the high purified and active nerve growth factor (NGF) from mouse submaxillary glands. Methods: NGF was prepared from mouse submaxillary glands by the way of elution with CM 52 column. The molecular weight and purification of NGF were detected by SDS-PAGE polyacrylamide gel electrophoresis. The biological activity of NGF was verified thorough culturing DRG. Results: About 14 kDa stained band was observed on SDS-PAGE and it promoted proliferation of dorsal root gang lia (DRG). Conclusion: Good quality of NGF could be obtained with these methods.展开更多
Background: Pruritus is a distressing symptom of cholestatic, inflammatory, and malignant liver diseases. It is a common symptom in many biliary and cholestatic disorders such as primary biliary cirrhosis (PBC). Sever...Background: Pruritus is a distressing symptom of cholestatic, inflammatory, and malignant liver diseases. It is a common symptom in many biliary and cholestatic disorders such as primary biliary cirrhosis (PBC). Several mechanisms are generally accepted as possible explanations to the underlying basis of itch. However, the exact pathophysiology of pruritus in liver diseases remains unclear. The cutaneous and central neurobiology of pruritus is complex and underlies a regulation of variable mechanisms. At present, not all mechanisms including neuromediators and receptors are known. Objective: Our objective is to evaluate whether the expression pattern of NGF and its receptor TrK A has a role in pruritus in a group of Egyptian cirrhotic patients. Patients and Methods: Forty Patients with liver cirrhosis were enrolled in the study depending on clinical evidence of stigmata of chronic liver disease (e.g. jaundice, ascites, palmar erythema, spider naevi, etc.) and ultrasonographic features of liver cirrhosis (e.g. coarse echo texture, shrunken liver, etc.). Patients were divided into two groups. Group (1): included 20 patients cirrhotic patients without pruritus. Group (2): included 20 patients cirrhotic patients with pruritus. A group of age and sex matched healthy twenty volunteers as a control. Results: After evaluation of histopathological using hematoxylin and eosin stained sections (H&E) was done. There was positive correlation between NGF protein expression and severity of pruritus in cirrhotic patients with pruritus (r = 0.876, p value ≤ 0.001). Also there was positive correlation between TrK A protein expression and severity of pruritus in cirrhotic patients with pruritus (r = 0.44, p value ≤ 0.05). Conclusions: We report, for the first time, role of these proteins (NGF/TrK A) in the mechanism of pruritus in cirrhotic patients and may provide a potential target for new treatment of pruritus in cirrhotic.展开更多
Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still u...Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still unclear. Here, in vivo and in vitro experiments uncovered one mechanism through which electroacupuncture and moxibustion affect regeneration after peripheral nerve injury. We first established rat models of sciatic nerve injury using neurotomy. Rats were treated with electroacupuncture or moxibustion at acupoints Huantiao (GB30) and Zusanli (ST36). Each treatment lasted 15 minutes, and treatments were given six times a week for 4 consecutive weeks. Behavioral testing was used to determine the sciatic functional index. We used electrophysiological detection to measure sciatic nerve conduction velocity and performed hematoxylin-eosin staining to determine any changes in the gastrocnemius muscle. We used immunohistochemistry to observe changes in the expression of S100—a specific marker for Schwann cells—and an enzyme-linked immunosorbent assay to detect serum level of nerve growth factor. Results showed that compared with the model-only group, sciatic functional index, recovery rate of conduction velocity, diameter recovery of the gastrocnemius muscle fibers, number of S100-immunoreactive cells,and level of nerve growth factor were greater in the electroacupuncture and moxibustion groups. The efficacy did not differ between treatment groups. The serum from treated rats was collected and used to stimulate Schwann cells cultured in vitro. Results showed that the viability of Schwann cells was much higher in the treatment groups than in the model group at 3 and 5 days after treatment. These findings indicate that electroacupuncture and moxibustion promoted nerve regeneration and functional recovery; its mechanism might be associated with the enhancement of Schwann cell proliferation and upregulation of nerve growth factor.展开更多
The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could...The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.展开更多
OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The...OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efficacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL: A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were "nerve growth factor, randomized controlled trials" in Chinese and in English. DATA SELECTION: Inclusion criteria: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections; patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES: The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS: Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P 〈 0.0001, RR: 1.35, 95%CI: 1.30-1.40). The average nerve conduction velocity in the nerve growth factor group was significantly higher than that in the control group (P 〈 0.00001, MD. 4.59 m/s, 95%CI: 4.12-5.06). The incidence of pain or sclero- ma at the injection site in the nerve growth factor group was also higher than that in the control group (P 〈 0.00001, RR: 6.30, 95%CI: 3.53-11.27), but such adverse effects were mild. CONCLUSION: Nerve growth factor can significantly improve nerve function in patients with nervous system disease and is safe and effective.展开更多
BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neur...BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal apoptosis. However, effects of PTEN in NGF-mediated neuroprotection against glutamate excitotoxicity remain poorly understood. OBJECTIVE: To investigate the relationship between NGF inhibition of glutamate-induced injury and PTEN. DESIGN, TIME AND SE'I'rlNG: The randomized, controlled, in vitro study was performed at the Department of Pathophysiology, Medical School of Nantong University, China from October 2007 to March 2008. MATERIALS: Glutamate, NGF, 4, 6-diamidino-2-phenyl-indolediacetate, 3-[4, 5-dimethylthiazol-2-yl]- 2, 5-diphenyl tetrazoliumbromide (M-I-F), and lactate dehydrogenase kit (Sigma, USA), fluorescence microscope and inverted phase contrast microscope (Olympus, Japan) were used in this study. METHODS: Hippocampal neurons were obtained from newborn (〈 24 hours) Sprague Dawley rats and cultured for 7 days. The control group was not treated with any intervention factor, the glutamate group was treated with glutamate (0.2 mmol/L), and NGF groups were treated with NGF (10, 50, 100, and 200 μg/L, respectively) prior to glutamate treatment. MAIN OUTCOME MEASURES: The MTT and lactate dehydrogenase assays were applied to evaluate viability of hippocampal neurons. Morphological changes in hippocampal neurons were observed using an inverted phase-contrast microscope, and neuronal apoptosis was detected by 4, 6-diamidino-2- phenyl-indolediacetate staining. PTEN mRNA and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. RESULTS: Glutamate (0.2 mmol/L) induced significantly decreased neuronal viability and greater lactate dehydrogenase efflux compared with the control group (P 〈 0.01). However, compared with the glutamate group, cell viability significantly increased and lactate dehydrogenase efflux decreased in the NGF group with increasing NGF concentrations (P 〈 0.05 or P 〈 0.01). The apoptotic ratio and PTEN mRNA and protein expression decreased in the NGF group compared with the glutamate group (P 〈 0.01). CONCLUSION: Pretreatment with NGF exerted neuroprotective effects against glutamate-induced injury, partially through inhibition of PTEN expression and neuronal apoptosis.展开更多
Aim To detect the expression of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) in salivary adenoid cystic carcinoma (SACC) tissues, as well as to determine the correlation between growth...Aim To detect the expression of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) in salivary adenoid cystic carcinoma (SACC) tissues, as well as to determine the correlation between growth factor expression and prognosis in SACC. Methodology Medical records of 63 patients surgically treated for SACC between January 1988 and October 2005 were reviewed. Immunohistochemistry was performed to examine the expression of NGF and VEGF in tumor tissues. Kaplan-Meier analysis and Cox's proportional hazard regression model were applied to assess predictors of survival. Results NGF and VEGF were overexpressed in SACC tissues, compared with those in normal salivary tissues (P〈0.05), and the staining intensity of these two factors was stronger in groups of solid subtype, advanced TNM stage, perineural invasion and recurrence. Patients with high- expression of NGF and VEGF, solid subtype, advanced stage, perineural invasion, recurrence and extended resection alone had worse survival rates (P〈0.05). Conclusion NGF and VEGF are expressed increasingly in the tissues of SACC cases with invasion and metastasis. NGF expression and VEGF expression are independent prognosis factors for survival.展开更多
Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells.Nerve growth factor and its receptor Trk A may promote regeneration of neural cells,but their expression after subara...Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells.Nerve growth factor and its receptor Trk A may promote regeneration of neural cells,but their expression after subarachnoid hemorrhage remains unclear.In the present study,a rat model of subarachnoid hemorrhage was established using two injections of autologous blood into the cistern magna.Immunohistochemical staining suggested that the expression of nerve growth factor and Trk A in the cerebral cortex and brainstem increased at 6 hours,peaked at 12 hours and decreased 1 day after induction of subarachnoid hemorrhage,whereas the expression in the hippocampus increased at 6 hours,peaked on day 1,and decreased 3 days later.Compared with those for the rats in the sham and saline groups,neurobehavioral scores decreased significantly 12 hours and 3 days after subarachnoid hemorrhage(P 〈 0.05).These results suggest that the expression of nerve growth factor and its receptor Trk A is dynamically changed in the rat brain and may thus participate in neuronal survival and nerve regeneration after subarachnoid hemorrhage.展开更多
BACKGROUND: Studies have shown that abnormal innervation is an important factor impacting occurrence and development of pathological pain in endometriosis. OBJECTIVE: To observe uterine innervation of adenomyosis mi...BACKGROUND: Studies have shown that abnormal innervation is an important factor impacting occurrence and development of pathological pain in endometriosis. OBJECTIVE: To observe uterine innervation of adenomyosis mice and to analyze the cause of innervation changes due to nerve growth factor (NGF) expression, inflammation, and vascularization. DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed at the Research Institute of Obstetrics and Gynecology Hospital, and Central Laboratory of Zhongshan Hospital, Fudan University from March to December 2008. MATERIALS: Tamoxifen was provided by Fudan Forward, China. Rabbit anti-mouse NGF was purchased from Santa Cruz Corporation, USA; rabbit anti-protein gene product 9.5 (PGP9.5) and rabbit anti-substance P (SP) were purchased from Chemicon, USA. METHODS: A total of 40 newborn ICR mice were randomly assigned to adenomyosis model and control groups, with 20 animals in each group. Mice in the adenomyosis model group were orally administrated 2.7 μmol/kg tamoxifen on days 2-5 after birth, while the controls were not treated. MAIN OUTCOME MEASURES: Both uteri from all mice were harvested at days 135-145 after birth Expressions of polyclonal PGP9.5 and SP were immunohistochemically detected to demonstrate pan- and sensory nerve fibers. Microvessel density was quantified in the endometrium and myometrium using immunochemical staining for polyclonal rabbit anti-CD31, which stained vessels. Gene expression for NGF, high-affinity tyrosine kinase receptor (trkA), p75 neuretrophin receptor (p75NTR), bradykinin receptor-1 (BKR-1), and 2 (BKR-2), as well as substance P receptor (neurokininl receptor, NK1-R), were detected by reverse transcription-polymerase chain reaction. NGF-13 protein expression was detected by Western blot analysis. RESULTS: More nerve fibers were stained with PGP9.5 in the endometrium and myometrium, and with SP in the endometrium, in adenomyosis mice compared with controls (P 〈 0.01 and P 〈 0.05). Microvessel density in the myometrium of adenomyosis mice was significantly greater than the controls (P 〈 0.01). In the uterus of adenomyosis mice, mRNA expression of NGF and its two receptors (trkA and p75 NTR), BKR-1, and NK1-R, as well as protein expression of NGF-β, were greater than the control mice (P 〈 0.01 or P 〈 0.05). CONCLUSION: Uterine innervation in the adenomyosis mice was increased compared with the controls. Moreover, NGF expression, inflammation, and vascularization, which have been shown to be impact factors of innervation, were abnormal in the uteri of adenomyosis mice.展开更多
Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of...Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.展开更多
A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to...A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to the infarct locus.The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio,a quantitative index of diffusion-weighted MRI.At 6 hours,24 hours,7 days and 3 months after modeling,the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining,immunohistochemistry,electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment.This result was consistent with diffusion-weighted MRI measurements.Experimental findings indicate that nerve growth factor can protect against cerebral infarction,and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect.展开更多
Rapamycin, similar to FKS06, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the e...Rapamycin, similar to FKS06, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of raparnycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.展开更多
To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n=...To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubeeeo-modified Eagles medium (DMEM , Group Ⅰ ), MSCs (Group Ⅱ ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunoeytoehemieal staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunoeytoehemieal staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P〈0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astroeytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.展开更多
Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embe...Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The resuits showed that the expression levels ofNGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P〈0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P〈0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P〈0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.展开更多
基金supported by PLA General Hospital Program,No.LB20201A010024(to LW).
文摘Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective.
基金supported by the Natural Science Foundation of Shandong Province in China,No.ZR2013HM102,Y2007C046the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province in China,No.BS2013YY038the National Natural Science Foundation of China,No.81301727
文摘Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear, p75 neurotrophin receptor (p75NTR) plays an important role in the regulation of peripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75NTR expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75NTR mRNA and protein expression in the Schwann cells at the anastomotic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote peripheral nerve regeneration by up-regulating p75NTR expression in Schwann cells.
文摘Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.
基金the National High Technology Program of China (863 Programs), No. 2006AA02A117
文摘We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF was found to be present in the extracellular space and cytoplasm. In addition, mature NGF was expressed in extracellular space, but with a very low signal. In ischemic cortex only, proNGF was significantly decreased, reaching a minimal level at 1 day. Mature NGF was increased at 4 hours, then reached a minimal level at 3 days. The p75 neurotrophin receptor (p75NTR) was significantly decreased after ischemia, and increased at 3 days after ischemia. These results confirmed that proNGF was the predominant form of NGF during the pathological process of cerebral ischemia-repeffusion injury. In addition, our findings suggest that ischemic injury may influence the conversion of proNGF to mature NGF, and that proNGF/p75NTR may be involved in reperfusion injury.
文摘Objective To investigate the regulatory effects of nerve growth factor (NGF) on basal and capsaicin-induced release of neuropeptide substance P (SP) in primary cultured embryonic rat dorsal root ganglion (DRG) neurons. Methods DRGs were dissected from 15-day-old embryonic Wistar rats. DRG neurons were dissociated and cultured, and then exposed to different concentrations of NGF (10 ng/mL, 30 ng/mL, or 100 ng/mL) for 72 h. The neurons cultured in media without NGF served as control. RT-PCR were used for detecting the mRNAs of SP and vanilloid receptor 1 (VR1) in the DRG neurons. The SP basal and capsaicin (100 nmol/L)-induced release in the culture were measured by radioimmunoassay (RIA). Results SP mRNA and VR1 mRNA expression increased in primary cultured DRG neurons in a dose-dependent manner of NGF. Both basal release and capsaicin-evoked release of SP increased in NGF-treated DRG neurons compared with in control group. The capsaicin-evoked release of SP also increased in a dose-dependent manner of NGF. Conclusion NGF may promote both basal release and capsaicin-evoked release of SP. NGF might increase the sensitivity of nociceptors by increasing the SP mRNA or VR1 mRNA.
基金This work was supported by the Key Program of Natural Science Foundation of Yunnan Province, China (No. 2003C0010Z).
文摘Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. Methods The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P 〈 0.05. Results The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P 〈 0.05). Conclusion NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.
文摘Objective: to obtain the high purified and active nerve growth factor (NGF) from mouse submaxillary glands. Methods: NGF was prepared from mouse submaxillary glands by the way of elution with CM 52 column. The molecular weight and purification of NGF were detected by SDS-PAGE polyacrylamide gel electrophoresis. The biological activity of NGF was verified thorough culturing DRG. Results: About 14 kDa stained band was observed on SDS-PAGE and it promoted proliferation of dorsal root gang lia (DRG). Conclusion: Good quality of NGF could be obtained with these methods.
文摘Background: Pruritus is a distressing symptom of cholestatic, inflammatory, and malignant liver diseases. It is a common symptom in many biliary and cholestatic disorders such as primary biliary cirrhosis (PBC). Several mechanisms are generally accepted as possible explanations to the underlying basis of itch. However, the exact pathophysiology of pruritus in liver diseases remains unclear. The cutaneous and central neurobiology of pruritus is complex and underlies a regulation of variable mechanisms. At present, not all mechanisms including neuromediators and receptors are known. Objective: Our objective is to evaluate whether the expression pattern of NGF and its receptor TrK A has a role in pruritus in a group of Egyptian cirrhotic patients. Patients and Methods: Forty Patients with liver cirrhosis were enrolled in the study depending on clinical evidence of stigmata of chronic liver disease (e.g. jaundice, ascites, palmar erythema, spider naevi, etc.) and ultrasonographic features of liver cirrhosis (e.g. coarse echo texture, shrunken liver, etc.). Patients were divided into two groups. Group (1): included 20 patients cirrhotic patients without pruritus. Group (2): included 20 patients cirrhotic patients with pruritus. A group of age and sex matched healthy twenty volunteers as a control. Results: After evaluation of histopathological using hematoxylin and eosin stained sections (H&E) was done. There was positive correlation between NGF protein expression and severity of pruritus in cirrhotic patients with pruritus (r = 0.876, p value ≤ 0.001). Also there was positive correlation between TrK A protein expression and severity of pruritus in cirrhotic patients with pruritus (r = 0.44, p value ≤ 0.05). Conclusions: We report, for the first time, role of these proteins (NGF/TrK A) in the mechanism of pruritus in cirrhotic patients and may provide a potential target for new treatment of pruritus in cirrhotic.
基金supported by the National Natural Science Foundation of China,No.81373754,81102670
文摘Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture-and moxibustion-based mechanisms underlying nerve repair are still unclear. Here, in vivo and in vitro experiments uncovered one mechanism through which electroacupuncture and moxibustion affect regeneration after peripheral nerve injury. We first established rat models of sciatic nerve injury using neurotomy. Rats were treated with electroacupuncture or moxibustion at acupoints Huantiao (GB30) and Zusanli (ST36). Each treatment lasted 15 minutes, and treatments were given six times a week for 4 consecutive weeks. Behavioral testing was used to determine the sciatic functional index. We used electrophysiological detection to measure sciatic nerve conduction velocity and performed hematoxylin-eosin staining to determine any changes in the gastrocnemius muscle. We used immunohistochemistry to observe changes in the expression of S100—a specific marker for Schwann cells—and an enzyme-linked immunosorbent assay to detect serum level of nerve growth factor. Results showed that compared with the model-only group, sciatic functional index, recovery rate of conduction velocity, diameter recovery of the gastrocnemius muscle fibers, number of S100-immunoreactive cells,and level of nerve growth factor were greater in the electroacupuncture and moxibustion groups. The efficacy did not differ between treatment groups. The serum from treated rats was collected and used to stimulate Schwann cells cultured in vitro. Results showed that the viability of Schwann cells was much higher in the treatment groups than in the model group at 3 and 5 days after treatment. These findings indicate that electroacupuncture and moxibustion promoted nerve regeneration and functional recovery; its mechanism might be associated with the enhancement of Schwann cell proliferation and upregulation of nerve growth factor.
基金supported by Proj.PRIN prot.2007AF3XH4_005,"Fondazione Cassa di Risparmio di Roma",and"Ministero della Salute"Grant No.RF-FGB-2005-150198
文摘The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.
基金supported by the National Science and Technology Major Projects for "Major New Drugs Innovation and Development",No.2012ZX09201-301-005
文摘OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efficacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL: A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were "nerve growth factor, randomized controlled trials" in Chinese and in English. DATA SELECTION: Inclusion criteria: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections; patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES: The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS: Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P 〈 0.0001, RR: 1.35, 95%CI: 1.30-1.40). The average nerve conduction velocity in the nerve growth factor group was significantly higher than that in the control group (P 〈 0.00001, MD. 4.59 m/s, 95%CI: 4.12-5.06). The incidence of pain or sclero- ma at the injection site in the nerve growth factor group was also higher than that in the control group (P 〈 0.00001, RR: 6.30, 95%CI: 3.53-11.27), but such adverse effects were mild. CONCLUSION: Nerve growth factor can significantly improve nerve function in patients with nervous system disease and is safe and effective.
基金the Natural Science Foundation of Jiangsu Province, No. BK2004048the Social Development and Technology Plan of Nantong City, No. K2008009
文摘BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal apoptosis. However, effects of PTEN in NGF-mediated neuroprotection against glutamate excitotoxicity remain poorly understood. OBJECTIVE: To investigate the relationship between NGF inhibition of glutamate-induced injury and PTEN. DESIGN, TIME AND SE'I'rlNG: The randomized, controlled, in vitro study was performed at the Department of Pathophysiology, Medical School of Nantong University, China from October 2007 to March 2008. MATERIALS: Glutamate, NGF, 4, 6-diamidino-2-phenyl-indolediacetate, 3-[4, 5-dimethylthiazol-2-yl]- 2, 5-diphenyl tetrazoliumbromide (M-I-F), and lactate dehydrogenase kit (Sigma, USA), fluorescence microscope and inverted phase contrast microscope (Olympus, Japan) were used in this study. METHODS: Hippocampal neurons were obtained from newborn (〈 24 hours) Sprague Dawley rats and cultured for 7 days. The control group was not treated with any intervention factor, the glutamate group was treated with glutamate (0.2 mmol/L), and NGF groups were treated with NGF (10, 50, 100, and 200 μg/L, respectively) prior to glutamate treatment. MAIN OUTCOME MEASURES: The MTT and lactate dehydrogenase assays were applied to evaluate viability of hippocampal neurons. Morphological changes in hippocampal neurons were observed using an inverted phase-contrast microscope, and neuronal apoptosis was detected by 4, 6-diamidino-2- phenyl-indolediacetate staining. PTEN mRNA and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. RESULTS: Glutamate (0.2 mmol/L) induced significantly decreased neuronal viability and greater lactate dehydrogenase efflux compared with the control group (P 〈 0.01). However, compared with the glutamate group, cell viability significantly increased and lactate dehydrogenase efflux decreased in the NGF group with increasing NGF concentrations (P 〈 0.05 or P 〈 0.01). The apoptotic ratio and PTEN mRNA and protein expression decreased in the NGF group compared with the glutamate group (P 〈 0.01). CONCLUSION: Pretreatment with NGF exerted neuroprotective effects against glutamate-induced injury, partially through inhibition of PTEN expression and neuronal apoptosis.
基金supported by National Natural Science Foundation of China (30060082)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ([2003] 593)+3 种基金Key Research Project Foundation of Guangxi Health Bureau (200006)Guangxi Science Foundation for Returned Overseas Scholars (0836013)Educational Scientific Research Foundation of Chinese Society of Higher Education (06AIL077 0110)Innovation Project of Guangxi Graduate Education (2009105981003M174)
文摘Aim To detect the expression of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) in salivary adenoid cystic carcinoma (SACC) tissues, as well as to determine the correlation between growth factor expression and prognosis in SACC. Methodology Medical records of 63 patients surgically treated for SACC between January 1988 and October 2005 were reviewed. Immunohistochemistry was performed to examine the expression of NGF and VEGF in tumor tissues. Kaplan-Meier analysis and Cox's proportional hazard regression model were applied to assess predictors of survival. Results NGF and VEGF were overexpressed in SACC tissues, compared with those in normal salivary tissues (P〈0.05), and the staining intensity of these two factors was stronger in groups of solid subtype, advanced TNM stage, perineural invasion and recurrence. Patients with high- expression of NGF and VEGF, solid subtype, advanced stage, perineural invasion, recurrence and extended resection alone had worse survival rates (P〈0.05). Conclusion NGF and VEGF are expressed increasingly in the tissues of SACC cases with invasion and metastasis. NGF expression and VEGF expression are independent prognosis factors for survival.
基金funded by the National Natural Science Foundation of China,No.30870844the New Century Supporting Program to Excellent Talents in China,No.NCET-05-0831
文摘Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells.Nerve growth factor and its receptor Trk A may promote regeneration of neural cells,but their expression after subarachnoid hemorrhage remains unclear.In the present study,a rat model of subarachnoid hemorrhage was established using two injections of autologous blood into the cistern magna.Immunohistochemical staining suggested that the expression of nerve growth factor and Trk A in the cerebral cortex and brainstem increased at 6 hours,peaked at 12 hours and decreased 1 day after induction of subarachnoid hemorrhage,whereas the expression in the hippocampus increased at 6 hours,peaked on day 1,and decreased 3 days later.Compared with those for the rats in the sham and saline groups,neurobehavioral scores decreased significantly 12 hours and 3 days after subarachnoid hemorrhage(P 〈 0.05).These results suggest that the expression of nerve growth factor and its receptor Trk A is dynamically changed in the rat brain and may thus participate in neuronal survival and nerve regeneration after subarachnoid hemorrhage.
基金the Construction Program of Shanghai Medical Intensive Subject (Obstetrics and Gynaecology), No. 05-111-0165
文摘BACKGROUND: Studies have shown that abnormal innervation is an important factor impacting occurrence and development of pathological pain in endometriosis. OBJECTIVE: To observe uterine innervation of adenomyosis mice and to analyze the cause of innervation changes due to nerve growth factor (NGF) expression, inflammation, and vascularization. DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed at the Research Institute of Obstetrics and Gynecology Hospital, and Central Laboratory of Zhongshan Hospital, Fudan University from March to December 2008. MATERIALS: Tamoxifen was provided by Fudan Forward, China. Rabbit anti-mouse NGF was purchased from Santa Cruz Corporation, USA; rabbit anti-protein gene product 9.5 (PGP9.5) and rabbit anti-substance P (SP) were purchased from Chemicon, USA. METHODS: A total of 40 newborn ICR mice were randomly assigned to adenomyosis model and control groups, with 20 animals in each group. Mice in the adenomyosis model group were orally administrated 2.7 μmol/kg tamoxifen on days 2-5 after birth, while the controls were not treated. MAIN OUTCOME MEASURES: Both uteri from all mice were harvested at days 135-145 after birth Expressions of polyclonal PGP9.5 and SP were immunohistochemically detected to demonstrate pan- and sensory nerve fibers. Microvessel density was quantified in the endometrium and myometrium using immunochemical staining for polyclonal rabbit anti-CD31, which stained vessels. Gene expression for NGF, high-affinity tyrosine kinase receptor (trkA), p75 neuretrophin receptor (p75NTR), bradykinin receptor-1 (BKR-1), and 2 (BKR-2), as well as substance P receptor (neurokininl receptor, NK1-R), were detected by reverse transcription-polymerase chain reaction. NGF-13 protein expression was detected by Western blot analysis. RESULTS: More nerve fibers were stained with PGP9.5 in the endometrium and myometrium, and with SP in the endometrium, in adenomyosis mice compared with controls (P 〈 0.01 and P 〈 0.05). Microvessel density in the myometrium of adenomyosis mice was significantly greater than the controls (P 〈 0.01). In the uterus of adenomyosis mice, mRNA expression of NGF and its two receptors (trkA and p75 NTR), BKR-1, and NK1-R, as well as protein expression of NGF-β, were greater than the control mice (P 〈 0.01 or P 〈 0.05). CONCLUSION: Uterine innervation in the adenomyosis mice was increased compared with the controls. Moreover, NGF expression, inflammation, and vascularization, which have been shown to be impact factors of innervation, were abnormal in the uteri of adenomyosis mice.
文摘Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.
基金supported by the Hebei Provincial Medical Science Research Key Youth Project,No.20100078
文摘A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to the infarct locus.The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio,a quantitative index of diffusion-weighted MRI.At 6 hours,24 hours,7 days and 3 months after modeling,the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining,immunohistochemistry,electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment.This result was consistent with diffusion-weighted MRI measurements.Experimental findings indicate that nerve growth factor can protect against cerebral infarction,and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect.
基金supported by the Major State Basic Research Development Program of China(973 Program),No.2011CB606205the National Natural Science Foundation of China,No.51172171 and 51103112+2 种基金the Key Project of Chinese Ministry of Education,No.313041the Natural Science Foundation of Hubei Province,No.2013CFB354the Fundamental Research Funds for the Central Universities,No.WUT:2013-IV-099
文摘Rapamycin, similar to FKS06, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of raparnycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.
文摘To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubeeeo-modified Eagles medium (DMEM , Group Ⅰ ), MSCs (Group Ⅱ ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunoeytoehemieal staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunoeytoehemieal staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P〈0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astroeytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.
基金supported by the Scientific Research Program of Health Department of Hubei Province,China(No.JX6B04)
文摘Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The resuits showed that the expression levels ofNGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P〈0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P〈0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P〈0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.