期刊文献+
共找到452篇文章
< 1 2 23 >
每页显示 20 50 100
Promoting axonal regeneration following nerve surgery: a perspective on ultrasound treatment for nerve injuries 被引量:3
1
作者 Konstantin D. Bergmeister Simeon C. Daeschler +4 位作者 Patrick Rhodius Philipp Schoenle Arne Bocker Ulrich Kneser Leila Harhaus 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1530-1533,共4页
Nerve injury is often associated with limited axonal regeneration and thus leads to delayed or incomplete axonal reinnervation.As a consequence of slow nerve regeneration,target muscle function is often insufficient a... Nerve injury is often associated with limited axonal regeneration and thus leads to delayed or incomplete axonal reinnervation.As a consequence of slow nerve regeneration,target muscle function is often insufficient and leads to a lifelong burden.Recently,the diagnosis of nerve injuries has been improved and likewise surgical reconstruction has undergone significant developments.However,the problem of slow nerve regeneration has not been solved.In a recent meta-analysis,we have shown that the application of low-intensity ultrasound promotes nerve regeneration experimentally and thereby can improve functional outcomes.Here we want to demonstrate the experimental effect of low intensity ultrasound on nerve regeneration,the current state of investigations and its possible future clinical applications. 展开更多
关键词 peripheral nerve injuries nerve regeneration REINNERVATION experimental studies low-intensityultrasound adjunct treatment nerve reconstruction nerve surgery axonal injury
下载PDF
Neuronal apoptosis and neurofilament protein expression in the lateral geniculate body of cats following acute optic nerve injuries 被引量:1
2
作者 Feng Yu Shao ji Yuan Gang Sui Rong wei Zhang Zi sheng Liu Pei gang Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第10期577-581,共5页
The visual pathway have 6 parts, involving optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation and cortical striatum area. Corresponding changes may be found in these 6 parts following opt... The visual pathway have 6 parts, involving optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation and cortical striatum area. Corresponding changes may be found in these 6 parts following optic nerve injury. At present, studies mainly focus on optic nerve and retina, but studies on lateral geniculate body are few. OBJECTIVE: To prepare models of acute optic nerve injury for observing the changes of neurons in lateral geniculate body, expression of neurofilament protein at different time after injury and cell apoptosis under the optical microscope, and for investigating the changes of neurons in lateral geniculate body following acute optic nerve injury. DESIGN: Completely randomized grouping design, controlled animal experiment. SETTING: Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA. MATERIALS: Twenty-eight adult healthy cats of either gender and common grade, weighing from 2.0 to 3.5 kg, were provided by the Animal Experimental Center of Fudan University. The involved cats were divided into 2 groups according to table of random digit: normal control group (n=3) and model group (n=25). Injury 6 hours, l, 3, 7 and 14 days five time points were set in model group for later observation, 5 cats at each time point. TUNEL kit (Bohringer-Mannheim company )and NF200& Mr 68 000 mouse monoclonal antibody (NeoMarkers Company) were used in this experiment. METHODS: This experiment was carded out in the Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA between June 2004 and June 2005.① The cats of model group were developed into cat models of acute intracranial optic nerve injury as follows: The anesthetized cats were placed in lateral position. By imitating operation to human, pterion approach was used. An incision was made at the joint line between outer canthus and tragus, and deepened along cranial base until white optic nerve via optic nerve pore and further to brain tissue. Optic nerve about 3 mm was liberated and occluded by noninvasive vascular clamp for 20 s. After removal of noninvasive vascular clamp, the area compressed by optic nerve was hollowed and narrowed, but non-fractured. Skull was closed when haemorrhage was not found. Bilateral pupillary size, direct and indirect light reflect were observed. Operative side pupil was enlarged as compared with opposite side, direct light reflect disappeared and indirect light reflect existed, which indicated that the models were successful. Animals of control group were not modeled .② The animals in the control group and model group were sacrificed before and 6 hours, 1, 3, 7 and 14 days after modeling respectively. Lateral geniculate body sample was taken and performed haematoxylin & eosin staining. Immunohistochemical staining showed lateral geniculate body neurofilament protein expression, and a comparison of immunohistochemial staining results was made between experimental group and control group. Terminal deoxynucleo-tidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) was used to label apoptotic cells in lateral geniculate body. MAIN OUTCOME MEASURES: Neuronal morphological change, neurofilament protein expression and cell apoptosis in lateral geniculate body following acute optic nerve injury. RESULTS: Twenty-eight involved cats entered the final analysis. ① Histological observation results: In the control group, cell processes were obviously found, which were few or shortening in the model group. ② Neuronal neurofilament protein expression: Cells in lateral geniculate body in the control group and at 6 hours after injury presented clear strip-shaped staining, and those at 7 and 14 days presented irregular distribution without layers and obviously decreasing staining intensity. The positive rate of neurofilament protein in lateral geniculate body in control group and 6 hours, l, 3, 7 and 14 days after injury was ( 10.22±0.42) %, (10.03±0.24) %, (9.94±0.14) %, (9.98±0.22) %, (8.18±0.34) % and (6.37±0.18)%, respectively. Positive rate of neurofilament protein in control group, at 6 hours, 1 or 3 days after injury was significantly different from that at 7 days after injury (P 〈 0.05); Positive rate of neurofilament protein in control group, at 6 hours, 1, 3 or 7 days after injury was significantly different from that at 14 days after injury (P 〈 0.05). It indicated that neuronal injury in lateral geniculate body was not obvious within short term after optic nerve injury, but obvious at 7 days after injury and progressively aggravated until at 14 days after injury.③ Neuronal apoptosis: TUNEL staining showed that neuronal apoptosis in lateral geniculate body appeared at 7 days after injury, and a Lot of neuronal apoptosis in lateral geniculate body was found at 14 days after injury. It indicated that neuronal injury in lateral geniculate body was related to apoptosis. CONCLUSION: In short term after optic nerve injury (within 7 days), nerve injury of lateral geniculate body is not obvious, then, it will aggravate with the elongation of injury time. The occurrence of neuronal iniury of lateral geniculate body is related to the apoptosis of nerve cells. 展开更多
关键词 optic nerve injuries lateral geniculate bodies apoptosis neurofilament proteins
下载PDF
Effect of low-frequency pulse percutaneous electric stimulation on peripheral nerve injuries at different sites 被引量:1
3
作者 Jinwu Wang Liye Chen +4 位作者 Qi Li Weifeng Ni Min Zhang Shangchun Guo Bingfang Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期253-255,共3页
BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can no... BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury. 展开更多
关键词 Effect of low-frequency pulse percutaneous electric stimulation on peripheral nerve injuries at different sites
下载PDF
Evaluating nerve guidance conduits for peripheral nerve injuries:a novel normalization method
4
作者 Munish B.Shah Wei Chang Xiaojun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1959-1960,共2页
The peripheral nervous system (PNS) is composed of the nerves and ganglia outside of the brain and spinal cord whose primary function is to connect the central nervous system to the limbs and organs. A peripheral ne... The peripheral nervous system (PNS) is composed of the nerves and ganglia outside of the brain and spinal cord whose primary function is to connect the central nervous system to the limbs and organs. A peripheral nerve injury (PNI) is damage to the nerves and/or its surrounding tissue. These injuries can affect up to 5% of patients that are hospitalized for trauma (Taylor et al., 2008) and over 50,000 surgical repair procedures are performed annually in the United States alone (Evans, 2001). 展开更多
关键词 RRR Evaluating nerve guidance conduits for peripheral nerve injuries NGC PNI
下载PDF
Experimental observation of rat's early-stage fracture healing with different kinds of nerve injuries
5
作者 马昕 《外科研究与新技术》 2005年第3期182-182,共1页
To investigate the impact of different kinds of nerve injuries of early-stage fracture healing.Methods Three groups of rats were included in the experiment among which group 1 was inflicted with femoral fracture and T... To investigate the impact of different kinds of nerve injuries of early-stage fracture healing.Methods Three groups of rats were included in the experiment among which group 1 was inflicted with femoral fracture and T10 spinal cord transsection (SCI),group 2 was inflicted with femoral and peripheral nerve resection (PNR),and group 3 with simple femoral fracture as control group.Two weeks after operation the femoral bones were collected for X-ray checking and 2 more weeks later X-ray checking was performed again followed by pathomorphologic exams.Results X-ray result showed no massive calluses in the bones in the 2nd week postoperatively,while in the 4th week,callus appeared with larger size in group 3 than that of group 1 and with smaller size than that of group 2.It was the same with the result of pathomorphologic examining.Cortical bone bridges between fracture point and osteiod were also found in group 2 and there were less normal blood vessels and worse bone remodeling than that of group 3.There were relatively immature calluses with more fibroblast-like cells and disordered bone structure in group 2.Group 3 showed normal healing process and callus structure.Conclusion Early-stage bone fracture healing can be influenced significantly by different kinds of nerve injuries.6 refs,6 figs. 展开更多
关键词 Experimental observation of rat’s early-stage fracture healing with different kinds of nerve injuries
下载PDF
Factors predicting sensory and motor recovery after the repair of upper limb peripheral nerve injuries 被引量:12
6
作者 Bo He Zhaowei Zhu +6 位作者 Qingtang Zhu Xiang Zhou Canbin Zheng Pengliang Li Shuang Zhu Xiaolin Liu Jiakai Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第6期661-672,共12页
OBJECTIVE: To investigate the factors associated with sensory and motor recovery after the repair of upper limb peripheral nerve injuries. DATA SOURCES: The online PubMed database was searched for English articles d... OBJECTIVE: To investigate the factors associated with sensory and motor recovery after the repair of upper limb peripheral nerve injuries. DATA SOURCES: The online PubMed database was searched for English articles describing outcomes after the repair of median, ulnar, radial, and digital nerve injuries in humans with a publication date between 1 January 1990 and 16 February 2011. STUDY SELECTION: The following types of article were selected: (1) clinical trials describ- ing the repair of median, ulnar, radial, and digital nerve injuries published in English; and (2) studies that reported sufficient patient information, including age, mechanism of injury, nerve injured, injury location, defect length, repair time, repair method, and repair materials. SPSS 13.0 software was used to perform univariate and multivariate logistic regression analyses and to in- vestigate the patient and intervention factors associated with outcomes. MAIN OUTCOME MEASURES: Sensory function was assessed using the Mackinnon-Dellon scale and motor function was assessed using the manual muscle test. Satisfactory motor recovery was defined as grade M4 or M5, and satisfactory sensory recovery was defined as grade S3+ or S4. RESULTS: Seventy-one articles were included in this study. Univariate and multivariate logistic regression analyses showed that repair time, repair materials, and nerve injured were inde- pendent predictors of outcome after the repair of nerve injuries (P 〈 0.05), and that the nerve injured was the main factor affecting the rate of good to excellent recovery. CONCLUSION: Predictors of outcome after the repair of peripheral nerve injuries include age, gender, repair time, repair materials, nerve injured, defect length, and duration of follow-up. 展开更多
关键词 nerve regeneration peripheral nerve injury outcome predictors nerve repair upperlimb univariate analysis PROGNOSIS 863 Program neural regeneration
下载PDF
An update–tissue engineered nerve grafts for the repair of peripheral nerve injuries 被引量:12
7
作者 Nitesh P.Patel Kristopher A.Lyon Jason H.Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期764-774,共11页
Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage,... Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed. 展开更多
关键词 peripheral nerve injury peripheral nerve repair tissue engineered nerve graft nerve conduit stem cells Schwann cells dorsal root ganglia neurons axon stretch-growth autologous tissue graft
下载PDF
GDNF to the rescue:GDNF delivery effects on motor neurons and nerves,and muscle re-innervation after peripheral nerve injuries 被引量:10
8
作者 Alberto F.Cintrón-Colón Gabriel Almeida-Alves +1 位作者 Juliana M.VanGyseghem John M.Spitsbergen 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期748-753,共6页
Peripheral nerve injuries commonly occur due to trauma,like a traffic accident.Peripheral nerves get severed,causing motor neuron death and potential muscle atrophy.The current golden standard to treat peripheral nerv... Peripheral nerve injuries commonly occur due to trauma,like a traffic accident.Peripheral nerves get severed,causing motor neuron death and potential muscle atrophy.The current golden standard to treat peripheral nerve lesions,especially lesions with large(≥3 cm)nerve gaps,is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur.If not tended early,degeneration of motor neurons and loss of axon regeneration can occur,leading to loss of function.Although surgical procedures exist,patients often do not fully recover,and quality of life deteriorates.Peripheral nerves have limited regeneration,and it is usually mediated by Schwann cells and neurotrophic factors,like glial cell line-derived neurotrophic factor,as seen in Wallerian degeneration.Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth.Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy,sciatic nerve crush,and compression,thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries.Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries.In this review,we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor,the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries,delivery systems,and complementary treatments(electrical muscle stimulation and exercise).Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients'quality of life. 展开更多
关键词 electrical muscle stimulation exercise glial cell line-derived neurotrophic factor glial cell line-derived neurotrophic factor delivery motor neuron nerve gap neurotrophic factor peripheral nerve injury Schwann cells skeletal muscle atrophy
下载PDF
Repair and regeneration of peripheral nerve injuries that ablate branch points 被引量:2
9
作者 JuliAnne E.Allgood George D.Bittner Jared S.Bushman 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2564-2568,共5页
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS h... The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses:(1) the branched anatomy of the peripheral nervous system,(2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed,(3) factors known to influence regeneration through branched nerve structures,(4) techniques and models of branched peripheral nerve injuries in animal models, and(5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system. 展开更多
关键词 ALLOGRAFT animal model branched injuries femoral nerve peripheral nerve injury peripheral nervous system REGENERATION REPAIR sciatic nerve surgical repair
下载PDF
Apelin inhibits motor neuron apoptosis in the anterior horn following acute spinal cord and sciatic nerve injuries 被引量:2
10
作者 Zhiyue Li Weiguo Wang Qun Zhao Weiquan Ning Bin Yang Suling Zhang Siyin Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第20期1525-1529,共5页
Rat models of acute spinal cord injury and sciatic nerve injury were established. Apelin expression in spinal cord tissue was determined. In normal rat spinal cords, apelin expression was visible; however, 2 hours pos... Rat models of acute spinal cord injury and sciatic nerve injury were established. Apelin expression in spinal cord tissue was determined. In normal rat spinal cords, apelin expression was visible; however, 2 hours post spinal cord injury, apelin expression peaked. Apelin expression increased 1 day post ligation of the sciatic nerve compared with normal rat spinal cords, and peaked at 3 days. Apelin expression was greater in the posterior horn compared with the anterior horn at each time point when compared with the normal group. The onset of neuronal apoptosis was significantly delayed following injection of apelin protein at the stump of the sciatic nerve, and the number of apoptotic cells after injury was reduced when compared with normal spinal cords. Our results indicate that apelin is expressed in the normal spinal cord and central nervous system after peripheral nerve injury. Apelin protein can reduce motor neuron apoptosis in the spinal cord anterior horn and delay the onset of apoptosis. 展开更多
关键词 APELIN rat spinal Cord sciatic nerve injury cell apoptosis neural regeneration
下载PDF
Follow-up evaluation with ultrasonography of peripheral nerve injuries after an earthquake 被引量:1
11
作者 Man Lu Yue Wang +7 位作者 Linxian Yue Jack Chiu Fanding He Xiaojing Wu Bin Zang Bin Lu Xiaoke Yao Zirui Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第6期582-588,共7页
Published data on earthquake-associated peripheral nerve injury is very limited. Ultrasonography has been proven to be efficient in the clinic to diagnose peripheral nerve injury. The aim of this study was to assess t... Published data on earthquake-associated peripheral nerve injury is very limited. Ultrasonography has been proven to be efficient in the clinic to diagnose peripheral nerve injury. The aim of this study was to assess the role of ultrasound in the evaluation of persistent peripheral nerve injuries 1 year after the Wenchuan earthquake. Thirty-four patients with persistent clinical symptoms and neurologic signs of impaired nerve function were evaluated with sonography prior to surgi- cal repair. Among 34 patients, ultrasonography showed that 48 peripheral nerves were entrapped, and 11 peripheral nerves were disrupted. There was one case of misdiagnosis on ultrasonogra- phy. The concordance rate of ultrasonographic findings with those of surgical findings was 98%. A total of 48 involved nerves underwent neurolysis and the symptoms resolved. Only five nerves had scar tissue entrapment. Preoperative and postoperative clinical and ultrasonographic results were concordant, which verified that ultrasonography is useful for preoperative diagnosis and postoperative evaluation of injured peripheral nerves. 展开更多
关键词 nerve regeneration EARTHQUAKE WENCHUAN ultrasound peripheral nerve nerve injury repair FOLLOW-UP 863 Program neural regeneration
下载PDF
A 2-year follow-up survey of 523 cases with peripheral nerve injuries caused by the earthquake in Wenchuan, China 被引量:1
12
作者 Chun-qing He Li-hai Zhang +1 位作者 Xian-fei Liu Pei-fu Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期252-259,共8页
We performed a 2-year follow-up survey of 523 patients with peripheral nerve injuries caused by the earthquake in Wenchuan, Sichuan Province, China. Nerve injuries were classiifed into three types: type I injuries we... We performed a 2-year follow-up survey of 523 patients with peripheral nerve injuries caused by the earthquake in Wenchuan, Sichuan Province, China. Nerve injuries were classiifed into three types: type I injuries were nerve transection injuries, type II injuries were nerve compression injuries, and type III injuries displayed no direct neurological dysfunction due to trauma. In this study, 31 patients had type I injuries involving 41 nerves, 419 had type II injuries involving 823 nerves, and 73 had type III injuries involving 150 nerves. Twenty-two patients had open tran-section nerve injury. The restoration of peripheral nerve function after different treatments was evaluated. Surgical decompression favorably affected nerve recovery. Physiotherapy was effective for type I and type II nerve injuries, but not substantially for type III nerve injury. Pharmaco-therapy had little effect on type II or type III nerve injuries. Targeted decompression surgery and physiotherapy contributed to the effective treatment of nerve transection and compression injuries. The Louisiana State University Health Sciences Center score for nerve injury severity de-clined with increasing duration of being trapped. In the ifrst year after treatment, the Louisiana State University Health Sciences Center score for grades 3 to 5 nerve injury increased by 28.2% to 81.8%. If scores were still poor (0 or 1) after a 1-year period of treatment, further treatment was not effective. 展开更多
关键词 nerve regeneration EARTHQUAKE peripheral nerve injury LSUHSC score compartment syndrome surgery therapy PHYSIOTHERAPY nerve decompression neural regeneration
下载PDF
CROSSING ANASTOMOSIS OF NERVE BUNDLES NEAR INNERVATED ORGANS TO TREAT IRREPARABLE NERVE INJURIES
13
作者 Zheng-da Kuang Xin-yu Zhang +3 位作者 Jian-xiang Yao Meng-kui Kang He Li Jia-zheng Wang 《Chinese Medical Sciences Journal》 CAS CSCD 2006年第2期131-134,共4页
Objective To study the therapeutical effects of crossing anastomosis of nerve on the peripheral and central nerve injuries. Methods Twelve kinds of central and peripheral nerve disorders and their complications were ... Objective To study the therapeutical effects of crossing anastomosis of nerve on the peripheral and central nerve injuries. Methods Twelve kinds of central and peripheral nerve disorders and their complications were treated with 11 kinds of crossing anastomosis of nerve bundles near the innervated organs. After nerve injury and repair, somatosensory evoked potentials (SEPs) and horseradish peroxidase (HRP) retrograde tracing studies were used to investigate the rabbit's nerve function and morphology. Resets The ulcers of all patients healed. Sensation, voluntary movement, and joint function recovered. Four weeks after the anastomosis of distal stump of radialis superficialis nerve and median nerve, pain sensation regained and SEPs appeared. HRP retrograde tracing studies demonstrated sensory nerve ending of medial nerve formed new connection with the body of neuron. Conclusion Crossing anastomosis of nerve is an effective method to treat peripheral and central nerve injuries. 展开更多
关键词 anastomosis of nerve nerve injury
下载PDF
miRNA-21-5p is an important contributor to the promotion of injured peripheral nerve regeneration using hypoxia-pretreated bone marrow-derived neural crest cells 被引量:1
14
作者 Meng Cong Jing-Jing Hu +9 位作者 Yan Yu Xiao-Li Li Xiao-Ting Sun Li-Ting Wang Xia Wu Ling-Jie Zhu Xiao-Jia Yang Qian-Ru He Fei Ding Hai-Yan Shi 《Neural Regeneration Research》 SCIE CAS 2025年第1期277-290,共14页
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep... Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine. 展开更多
关键词 AXOTOMY cell-free therapy conditioned medium extracellular vesicles hypoxic preconditioning microRNA oxygen-glucose deprivation peripheral nerve injury Schwann cell precursors
下载PDF
Polyethylene glycol fusion repair of severed rat sciatic nerves reestablishes axonal continuity and reorganizes sensory terminal fields in the spinal cord 被引量:1
15
作者 Emily A.Hibbard Liwen Zhou +5 位作者 Cathy Z.Yang Karthik Venkudusamy Yessenia Montoya Alexa Olivarez George D.Bittner Dale R.Sengelaub 《Neural Regeneration Research》 SCIE CAS 2025年第7期2095-2107,共13页
Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene g... Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments. 展开更多
关键词 AXOTOMY dorsal horn peripheral nerve injury PLASTICITY polyethylene glycol(PEG) sciatic nerve sensory terminals wheat germ agglutinin horseradish peroxidase
下载PDF
EZH2-dependent myelination following sciatic nerve injury
16
作者 Hui Zhu Li Mu +8 位作者 Xi Xu Tianyi Huang Ying Wang Siyuan Xu Yiting Wang Wencong Wang Zhiping Wang Hongkui Wang Chengbin Xue 《Neural Regeneration Research》 SCIE CAS 2025年第8期2382-2394,共13页
Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that ... Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries. 展开更多
关键词 DEMYELINATION EZH2 MYELINATION peripheral nerve injury PRC2 REMYELINATION Schwann cells sciatic nerve crush sciatic nerve transection
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
17
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury:state of the art and future perspectives
18
作者 Fatima Aldali Chunchu Deng +1 位作者 Mingbo Nie Hong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第11期3151-3171,共21页
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro... “Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions. 展开更多
关键词 clinical trials EXOSOME extracellular vesicles mesenchymal stem cells nerve regeneration peripheral nerve injury pre-clinical experiments
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
19
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
Autophagy-targeting modulation to promote peripheral nerve regeneration
20
作者 Yan Chen Hongxia Deng Nannan Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期1864-1882,共19页
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat... Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies. 展开更多
关键词 AUTOPHAGY autophagy related genes Charcot–Marie–Tooth diseases diabetic peripheral neuropathy METFORMIN MYELINATION peripheral nerve injury Schwann cells sciatic nerve Wallerian degeneration
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部