The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous syst...The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.展开更多
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne...Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.展开更多
Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic...Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum.Previously,lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis;however,recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system.In addition to their role in regulating cell metabolism,lipid droplets play a protective role in various cellular stress responses.Furthermore,lipid droplets exhibit specific functions in neurons and glial cells.Dysregulation of lipid droplet formation leads to cellular dysfunction,metabolic abnormalities,and nervous system diseases.This review aims to provide an overview of the role of lipid droplets in the nervous system,covering topics such as biogenesis,cellular specificity,and functions.Additionally,it will explore the association between lipid droplets and neurodegenerative disorders.Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.展开更多
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met...Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c...In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell ...BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell lymphomas,primary CNS T-cell lymphomas(PCNSTLs)are rare.PCNSTLs typically demonstrate some degree of enhancement on contrast-enhanced magnetic resonance imaging(MRI).To the best of our knowledge,non-enhancing PCNSTL has not been reported previously.CASE SUMMARY A 69-year-old male presented to the neurology department with complaints of mild cognitive impairment and gradual onset of left lower leg weakness over a span of two weeks.Initial MRI showed asymmetric T2-hyperintense lesions within the brain.No enhancement was observed on the contrast-enhanced T1 image.The initial diagnosis was neuro-Behçet’s disease.Despite high-dose steroid therapy,no alterations in the lesions were identified on initial MRI.The patient’s symptoms deteriorated further.An MRI performed one month after the initial scan revealed an increased lesion extent.Subsequently,brain biopsy confirmed the diagnosis of PCNSTL.The patient underwent definitive combined chemoradiotherapy.However,the patient developed bacteremia and died of septic shock approximately three months after diagnosis.CONCLUSION The absence of enhancement in the lesion did not rule out PCNSTL.A biopsy approach is advisable for pathological confirmation.展开更多
Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,...Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.展开更多
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct...Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.展开更多
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and...Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.展开更多
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse...CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.展开更多
Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generat...Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.展开更多
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi...By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.展开更多
In this editorial I comment on the article,published in the current issue of the World Journal of Clinical Oncology.Primary central nervous system lymphoma(PCNSL)is a disease of elderly and immunocompromised patients....In this editorial I comment on the article,published in the current issue of the World Journal of Clinical Oncology.Primary central nervous system lymphoma(PCNSL)is a disease of elderly and immunocompromised patients.The authors reported clinical results of 19 patients with PCNSL treated with zanubrutinib/high dose methotrexate(HD-MTX)until disease progression.They demonstrated that the combination of zanubrutinib with HD-MTX led to a marked clinical response and tolerability among these patients.They also observed that cerebrospinal fluid liquid biopsy to detect circulating tumor DNA may be a good option for evaluating treatment response and tumor burden in patients with PCNSL.PCNSL is a challenging disease for treatment as these patients present with different neurological states and comorbidities.Treatment has evolved over the years from whole brain radiotherapy to HD-MTX followed by autologous stem cell transplant.Gradually,treatment of patients with PCNSL is going to become individualized.展开更多
In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotr...In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotrexate(HD-MTX)as a therapeutic intervention for primary central nervous system lymphoma(PCNSL).The study involves a retrospective analysis of 19 PCNSL patients,highlighting clinicopathological characteristics,treatment outcomes,and genomic biomarkers.The results indicate the combination’s good tolerance and strong antitumor activity,with an 84.2%overall response rate.The authors emphasize the potential of zanubrutinib to modulate key genomic features of PCNSL,particularly mutations in myeloid differentiation primary response 88 and cluster of differentiation 79B.Furthermore,the study investigates the role of circulating tumor DNA in cerebrospinal fluid for disease surveillance and treatment response monitoring.In essence,the study provides valuable insights into the potential of combining zanubrutinib with HD-MTX as a frontline therapeutic regimen for PCNSL.The findings underscore the importance of exploring alternative treatment modalities and monitoring genomic and liquid biopsy markers to optimize patient outcomes.While the findings suggest promise,the study’s limitations should be considered,and further research is needed to establish the clinical relevance of this therapeutic approach for PCNSL.展开更多
Objective:To summarize the clinical features,imaging manifestations,therapeutic options,and prognosis of the primary angiitis of the central nervous system(PACNS)and to explore the role of high-resolution magnetic res...Objective:To summarize the clinical features,imaging manifestations,therapeutic options,and prognosis of the primary angiitis of the central nervous system(PACNS)and to explore the role of high-resolution magnetic resonance imaging(HR-MRI)in the PACNS diagnosis and treatment.Methods:One patient with PACNS treated by HR-MRI was retrospectively analyzed and summarized by combining relevant literature.Results:The patient was a young female who was hospitalized with progressive cerebral infarction and multiple intracranial arterial stenosis.HR-MRI indicated vasculitic changes.After excluding other diseases,hormone shock combined with immunosuppression was given,followed by long-term rehabilitation treatment.The patient’s condition tended to stabilize,and the prognosis was satisfactory.Conclusion PACNS is challenging to diagnose and is characterized by poor prognosis and easy recurrence.HR-MRI plays an important role in the clinical diagnosis and treatment adjustment for PACNS.展开更多
It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the i...It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.展开更多
NF-κB family is a kind of nuclear factors in B lymphocyte that can bind to the immunoglobulin κ-chain enhancer and enhance transcriptional activity. NF-κB/Rel proteins, as a dimeric transcription factor, control th...NF-κB family is a kind of nuclear factors in B lymphocyte that can bind to the immunoglobulin κ-chain enhancer and enhance transcriptional activity. NF-κB/Rel proteins, as a dimeric transcription factor, control the expression of genes that regulate a broad range of biological processes through canonical and non-canonical pathways. In the central nervous system, NF-κB controls inflammatory reactions and the apoptotic cell death following nerve injury. It also contributes to the infarction and cell death in stroke models and patients. However, NF-κB is essential for neurosurvival as well. NF-κB activation is a part of recovery process that may protect neurons against oxidative-stresses or brain ischemia-induced apoptosis and neurodegeneration. Inhibition of NF-κB may reduce its neuroprotection activity. Hence the dual opposite effects of NF-κB on cells. The ultimate survival or death of neurons depends on which, where and when the NF-κB factors are activated.展开更多
文摘The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
文摘Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
基金funded by Basic Research Program of Shanghai,No.20JC1412200(to JW)the National Key Research and Development Program of China,No.2020YFA0113000(to RCZ)。
文摘Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum.Previously,lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis;however,recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system.In addition to their role in regulating cell metabolism,lipid droplets play a protective role in various cellular stress responses.Furthermore,lipid droplets exhibit specific functions in neurons and glial cells.Dysregulation of lipid droplet formation leads to cellular dysfunction,metabolic abnormalities,and nervous system diseases.This review aims to provide an overview of the role of lipid droplets in the nervous system,covering topics such as biogenesis,cellular specificity,and functions.Additionally,it will explore the association between lipid droplets and neurodegenerative disorders.Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
基金supported by the National Natural Science Foundation of China, No.82274616the Key Laboratory Project for General Universities in Guangdong Province, No.2019KSYS005Guangdong Province Science and Technology Plan International Cooperation Project, No.2020A0505100052 (all to QW)。
文摘Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金supported by Ohio State Start Up FundNational Institutes of Health(NIH)+12 种基金Department of Defense(DoD)Wings for Life Spinal Cord Research Foundation,Wings for Life Spinal Cord Research Foundation(Austria)California Institute of Regenerative Medicine(CIRM)International Spinal Research Trust(United Kingdom)Stanford University Bio-X Program Interdisciplinary Initiatives Seed Grant IIP-7Dennis Chan FoundationKlein Family FundLucile Packard Foundation for Children's HealthStanford Institute for Neuro-Innovation and Translational Neurosciences(SINTN)Saunders Family Neuroscience FundJames Doty Neurosurgery FundHearst Neuroscience FundEileen Bond Research Fund(to GP)。
文摘In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
文摘BACKGROUND Primary central nervous system lymphoma(PCNSL)is a non-Hodgkin lymphoma that originates in the central nervous system(CNS)and is exclusively limited to the CNS.Although most PCNSLs are diffuse large B-cell lymphomas,primary CNS T-cell lymphomas(PCNSTLs)are rare.PCNSTLs typically demonstrate some degree of enhancement on contrast-enhanced magnetic resonance imaging(MRI).To the best of our knowledge,non-enhancing PCNSTL has not been reported previously.CASE SUMMARY A 69-year-old male presented to the neurology department with complaints of mild cognitive impairment and gradual onset of left lower leg weakness over a span of two weeks.Initial MRI showed asymmetric T2-hyperintense lesions within the brain.No enhancement was observed on the contrast-enhanced T1 image.The initial diagnosis was neuro-Behçet’s disease.Despite high-dose steroid therapy,no alterations in the lesions were identified on initial MRI.The patient’s symptoms deteriorated further.An MRI performed one month after the initial scan revealed an increased lesion extent.Subsequently,brain biopsy confirmed the diagnosis of PCNSTL.The patient underwent definitive combined chemoradiotherapy.However,the patient developed bacteremia and died of septic shock approximately three months after diagnosis.CONCLUSION The absence of enhancement in the lesion did not rule out PCNSTL.A biopsy approach is advisable for pathological confirmation.
基金supported by KAKENHI under grant number 23K08535,22K09274(to MK)。
文摘Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.
基金supported by the Natural Science Foundation of Zhejiang Province,No.LQ23C090003 (to CZ)the Major Project on Brain Science and Analog Brain Research of Ministry of Science and Technology of China,No.2022ZD0204701 (to MQ)the National Natural Science Foundation of China,No.32170969 (to MQ)。
文摘Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
基金supported by the National Natural Science Foundation of China,No.82101461(to ZL)。
文摘Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
基金supported by the National Major Project of Research and Development,No.2022YFA1105500(to SZ)the National Natural Science Foundation of China,No.81870975(to SZ)Innovation Program for Graduate Students in Jiangsu Province of China,No.KYCX223335(to MZ)。
文摘CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
基金supported by NIH Grant Al-15614 (to CAD)the Ministerio de Ciencia e Innovacion (PID2020-120267BRI00AEI/10.13039/501100011033)(to RLV)。
文摘Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
基金Supported by The Guangdong Basic and Applied Basic Research Foundation,China,No.2024A1515011236.
文摘By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
文摘In this editorial I comment on the article,published in the current issue of the World Journal of Clinical Oncology.Primary central nervous system lymphoma(PCNSL)is a disease of elderly and immunocompromised patients.The authors reported clinical results of 19 patients with PCNSL treated with zanubrutinib/high dose methotrexate(HD-MTX)until disease progression.They demonstrated that the combination of zanubrutinib with HD-MTX led to a marked clinical response and tolerability among these patients.They also observed that cerebrospinal fluid liquid biopsy to detect circulating tumor DNA may be a good option for evaluating treatment response and tumor burden in patients with PCNSL.PCNSL is a challenging disease for treatment as these patients present with different neurological states and comorbidities.Treatment has evolved over the years from whole brain radiotherapy to HD-MTX followed by autologous stem cell transplant.Gradually,treatment of patients with PCNSL is going to become individualized.
文摘In this editorial,we comment on the article by Wang et al.This manuscript explores the potential synergistic effects of combining zanubrutinib,a novel oral inhibitor of Bruton’s tyrosine kinase,with high-dose methotrexate(HD-MTX)as a therapeutic intervention for primary central nervous system lymphoma(PCNSL).The study involves a retrospective analysis of 19 PCNSL patients,highlighting clinicopathological characteristics,treatment outcomes,and genomic biomarkers.The results indicate the combination’s good tolerance and strong antitumor activity,with an 84.2%overall response rate.The authors emphasize the potential of zanubrutinib to modulate key genomic features of PCNSL,particularly mutations in myeloid differentiation primary response 88 and cluster of differentiation 79B.Furthermore,the study investigates the role of circulating tumor DNA in cerebrospinal fluid for disease surveillance and treatment response monitoring.In essence,the study provides valuable insights into the potential of combining zanubrutinib with HD-MTX as a frontline therapeutic regimen for PCNSL.The findings underscore the importance of exploring alternative treatment modalities and monitoring genomic and liquid biopsy markers to optimize patient outcomes.While the findings suggest promise,the study’s limitations should be considered,and further research is needed to establish the clinical relevance of this therapeutic approach for PCNSL.
基金Basic and Applied Basic Research Fund Project of Guangdong Province(2022A1515220161).
文摘Objective:To summarize the clinical features,imaging manifestations,therapeutic options,and prognosis of the primary angiitis of the central nervous system(PACNS)and to explore the role of high-resolution magnetic resonance imaging(HR-MRI)in the PACNS diagnosis and treatment.Methods:One patient with PACNS treated by HR-MRI was retrospectively analyzed and summarized by combining relevant literature.Results:The patient was a young female who was hospitalized with progressive cerebral infarction and multiple intracranial arterial stenosis.HR-MRI indicated vasculitic changes.After excluding other diseases,hormone shock combined with immunosuppression was given,followed by long-term rehabilitation treatment.The patient’s condition tended to stabilize,and the prognosis was satisfactory.Conclusion PACNS is challenging to diagnose and is characterized by poor prognosis and easy recurrence.HR-MRI plays an important role in the clinical diagnosis and treatment adjustment for PACNS.
基金supported by the National Natural Science Foundation of China(No.30571909,No.30872666)the Youth Teacher Foundation of Jiangsu Pro-vince(No.BU134701)China,and the Medical Development Foundation of Soochow University(No.EE134615)
文摘It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.
基金National Natural Science Foundation of China (No. 30571909) the Youth Teacher's Research Foundation of Jiangsu Province, China (No. BU 134701 ) the Medical Development Foundation of Soochow University (No. EE134615).
文摘NF-κB family is a kind of nuclear factors in B lymphocyte that can bind to the immunoglobulin κ-chain enhancer and enhance transcriptional activity. NF-κB/Rel proteins, as a dimeric transcription factor, control the expression of genes that regulate a broad range of biological processes through canonical and non-canonical pathways. In the central nervous system, NF-κB controls inflammatory reactions and the apoptotic cell death following nerve injury. It also contributes to the infarction and cell death in stroke models and patients. However, NF-κB is essential for neurosurvival as well. NF-κB activation is a part of recovery process that may protect neurons against oxidative-stresses or brain ischemia-induced apoptosis and neurodegeneration. Inhibition of NF-κB may reduce its neuroprotection activity. Hence the dual opposite effects of NF-κB on cells. The ultimate survival or death of neurons depends on which, where and when the NF-κB factors are activated.