Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and...Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and symptoms. Clinical and experimental studies have revealed the main pathological changes of injured spinal cord implicated in all these signs and symptoms, including neuropathic pain. After few hours of traumatic SCI, it is usual to observe broken blood brain barrier with plasma and blood cells extravasation, cell necrosis, disruption of ascending and descending spinal cord pathways and increased potassium and glutamate. Glutamate contributes to excitotoxicity of neurons whereas potassium facilitates ectopic depolarization of survival neurons and activation of resident microglia.展开更多
Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-...Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-renewal and differentiation of neural stem cells.Howeve r,the tissue repair process instigated by endogenous neural stem cells is incapable of restoring central nervous system injuries without external intervention.Recently,resident/peripheral immune cells have been demonstrated to exert significant effects on neural stem cells.Thus,the resto ration of traumatic injuries in the central nervous system by the immune intervention in neural stem cells represents a potential therapeutic method.In this review,we discuss the roles and possible mechanisms of immune cells on the selfrenewal and differentiation of neural stem cells along with the prognosis of central nervous system injuries based on immune intervention.Finally,we discuss remaining research challenges that need to be considered in the future.Further elucidation of these challenges will fa cilitate the successful application of neural stem cells in central nervous system injuries.展开更多
Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm...Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm repair(TEVAR).However,patients are prone to various complications after surgery,with central nervous system injury being the most common,which seriously affects their prognosis and increases the risk of disability and death.Therefore,exploring the risk factors of central nervous system injury after TEVAR can provide a basis for its prevention and control.AIM To investigate the risk factors for central nervous system injury after the repair of a thoracic endovascular aneurysm with type B aortic dissection.METHODS We enrolled 306 patients with type B aortic dissection who underwent TEVAR at our hospital between December 2019 and October 2022.The patients were categorized into injury(n=159)and non-injury(n=147)groups based on central nervous system injury following surgery.The risk factors for central nervous system injury after TEVAR for type B aortic dissection were screened by comparing the two groups.Multivariate logistic regression analysis was performed.RESULTS The Association between age,history of hypertension,blood pH value,surgery,mechanical ventilation,intensive care unit stay,postoperative recovery times on the first day after surgery,and arterial partial pressure of oxygen on the first day after surgery differed substantially(P<0.05).Multivariate logistic regression analysis indicated that age,surgery time,history of hypertension,duration of mechanical ventilation,and intensive care unit stay were independent risk factors for central nervous system injury after TEVAR of type B aortic dissection(P<0.05).CONCLUSION For high-risk patients with central nervous system injury after TEVAR of type B aortic dissection,early intervention measures should be implemented to lower the risk of neurological discomfort following surgery in high-risk patients with central nervous system injury after TEVAR for type B aortic dissection.展开更多
The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vesse...The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vessels in the meninges of the brain and the spinal cord has provided novel insights into neurophysiology.They emerge as major pathways for fluid exchange.The abundance of immune cells in lymphatic vessels and meninges also suggests that lymphatic vessels are actively involved in neuroimmunity.The lymphatic system,through its role in the clearance of neurotoxic proteins,autoimmune cell infiltration,and the transmission of pro-inflammatory signals,participates in the pathogenesis of a variety of neurological disorders,including neurodegenerative and neuroinflammatory diseases and traumatic injury.Vascular endothelial growth factor C is the master regulator of lymphangiogenesis,a process that is critical for the maintenance of central nervous system homeostasis.In this review,we summarize current knowledge and recent advances relating to the anatomical features and immunological functions of the lymphatic system of the central nervous system and highlight its potential as a therapeutic target for neurological disorders and central nervous system repair.展开更多
Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protei...Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout(GFAPVIM) mice. However, attenuated glial scar formation in post-stroke in GFAP–/– VIM–/– mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIMmice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.展开更多
The central nervous system(CNS)has very restricted intrinsic regeneration ability under the injury or disease condition.Innovative repair strategies,therefore,are urgently needed to facilitate tissue regeneration and ...The central nervous system(CNS)has very restricted intrinsic regeneration ability under the injury or disease condition.Innovative repair strategies,therefore,are urgently needed to facilitate tissue regeneration and functional recovery.The published tissue repair/regeneration strategies,such as cell and/or drug delivery,has been demonstrated to have some therapeutic effects on experimental animal models,but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells,difficulty in integrating with the host or restriction of blood-brain barriers to administration patterns.Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area,but also sustainably deliver bioproducts to the local injured area,thus improving the microenvironment in that area.This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration.展开更多
Central nervous system(CNS)injury,induced by ischemic/hemorrhagic or traumatic damage,is one of the most common causes of death and long-term disability worldwide.Reactive oxygen and nitrogen species(RONS)resulting in...Central nervous system(CNS)injury,induced by ischemic/hemorrhagic or traumatic damage,is one of the most common causes of death and long-term disability worldwide.Reactive oxygen and nitrogen species(RONS)resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury.Therefore,by targeting RONS,antioxidant therapies have been intensively explored in previous studies.However,traditional antioxidants have achieved limited success thus far,and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge.With the rapid development of nanotechnology,novel nanomaterials provided promising opportunities to address this challenge.Within these,nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability.To promote its practical application,it is important to know what has been done and what has yet to be done.This review aims to present the opportunities and challenges of nanoceria in treating CNS injury.The physicochemical properties of nanoceria and its interaction with RONS are described.The applications of nanoceria for stroke and neurotrauma treatment are summarized.The possible directions for future application of nanoceria in CNS injury treatment are proposed.展开更多
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxi...Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high in- tracranial pressure following traumatic brain injuries in adults. It is a new treatment that increases survival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical pro- duction, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system damage. Although a series of pathological and physiological changes as well as potential side ef- fects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.展开更多
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, p...Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.展开更多
Human amniotic epithelial cells were isolated from a piece of fresh amnion. Using immunocytochemical methods, we investigated the expression of neuronal phenotypes (microtubule-associated protein-2, glial fibrillary ...Human amniotic epithelial cells were isolated from a piece of fresh amnion. Using immunocytochemical methods, we investigated the expression of neuronal phenotypes (microtubule-associated protein-2, glial fibrillary acidic protein and nestin) in human amniotic epithelial cells. The conditioned medium of human amniotic epithelial cells promoted the growth and proliferation of rat glial cells cultured in vitro, and this effect was dose-dependent. Human amniotic epithelial cells were further transplanted into the corpus striatum of healthy adult rats and the grafted cells could integrate with the host and migrate 1 2 mm along the nerve fibers in corpus callosum. Our experimental findings indicate that human amniotic epithelial cells may be a new kind of seed cells for use in neurograft.展开更多
Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors...Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.展开更多
Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary f...Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary for intemeuronal communication. Excitotoxicity and other sec- ondary biochemical events contribute to morphological changes in neurons following injury. Evidence suggests that various transcription factors are involved in the dendritic response to injury and potential therapies. Transcription factors play critical roles in the intracellular regulation of neuronal morphological plasticity and dendritic growth and patteming. Mounting evidence supports a crucial role for epigenetic modifications via histone deacetylases, histone acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury and repair processes. Gene regulation through epigenetic modification is of great interest in neurotrauma research, and an early picture is beginning to emerge conceming how injury triggers intracellular events that modulate such responses. This review provides an overview of injury-mediated influences on transcriptional regulation through epigenefic modification, the intracellular processes involved in the morphological consequences of such changes, and potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene expression to facilitate growth and signaling through dendritic arborization following injury.展开更多
基金funded by Accions Singulars de R+D(Sing 12/17)del Vicerectorat de Recerca de la Universitat de Girona,Girona,Spain
文摘Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and symptoms. Clinical and experimental studies have revealed the main pathological changes of injured spinal cord implicated in all these signs and symptoms, including neuropathic pain. After few hours of traumatic SCI, it is usual to observe broken blood brain barrier with plasma and blood cells extravasation, cell necrosis, disruption of ascending and descending spinal cord pathways and increased potassium and glutamate. Glutamate contributes to excitotoxicity of neurons whereas potassium facilitates ectopic depolarization of survival neurons and activation of resident microglia.
基金supported by the National Natural Science Foundation of China,Nos.82172527 and 81972138 (to LLW)。
文摘Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-renewal and differentiation of neural stem cells.Howeve r,the tissue repair process instigated by endogenous neural stem cells is incapable of restoring central nervous system injuries without external intervention.Recently,resident/peripheral immune cells have been demonstrated to exert significant effects on neural stem cells.Thus,the resto ration of traumatic injuries in the central nervous system by the immune intervention in neural stem cells represents a potential therapeutic method.In this review,we discuss the roles and possible mechanisms of immune cells on the selfrenewal and differentiation of neural stem cells along with the prognosis of central nervous system injuries based on immune intervention.Finally,we discuss remaining research challenges that need to be considered in the future.Further elucidation of these challenges will fa cilitate the successful application of neural stem cells in central nervous system injuries.
文摘Aortic dissection is the deadliest disease of the cardiovascular system.Type B aortic dissection accounts for 30%-60%of aortic dissections and is mainly treated by endovascular repair of thoracic endovascular aneurysm repair(TEVAR).However,patients are prone to various complications after surgery,with central nervous system injury being the most common,which seriously affects their prognosis and increases the risk of disability and death.Therefore,exploring the risk factors of central nervous system injury after TEVAR can provide a basis for its prevention and control.AIM To investigate the risk factors for central nervous system injury after the repair of a thoracic endovascular aneurysm with type B aortic dissection.METHODS We enrolled 306 patients with type B aortic dissection who underwent TEVAR at our hospital between December 2019 and October 2022.The patients were categorized into injury(n=159)and non-injury(n=147)groups based on central nervous system injury following surgery.The risk factors for central nervous system injury after TEVAR for type B aortic dissection were screened by comparing the two groups.Multivariate logistic regression analysis was performed.RESULTS The Association between age,history of hypertension,blood pH value,surgery,mechanical ventilation,intensive care unit stay,postoperative recovery times on the first day after surgery,and arterial partial pressure of oxygen on the first day after surgery differed substantially(P<0.05).Multivariate logistic regression analysis indicated that age,surgery time,history of hypertension,duration of mechanical ventilation,and intensive care unit stay were independent risk factors for central nervous system injury after TEVAR of type B aortic dissection(P<0.05).CONCLUSION For high-risk patients with central nervous system injury after TEVAR of type B aortic dissection,early intervention measures should be implemented to lower the risk of neurological discomfort following surgery in high-risk patients with central nervous system injury after TEVAR for type B aortic dissection.
基金supported by the Key Program of the National Natural Science Foundation of ChinaNo.82030071+1 种基金the Science and Technology Major Project of ChangshaNo.kh2103008 (both to JZH)
文摘The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vessels in the meninges of the brain and the spinal cord has provided novel insights into neurophysiology.They emerge as major pathways for fluid exchange.The abundance of immune cells in lymphatic vessels and meninges also suggests that lymphatic vessels are actively involved in neuroimmunity.The lymphatic system,through its role in the clearance of neurotoxic proteins,autoimmune cell infiltration,and the transmission of pro-inflammatory signals,participates in the pathogenesis of a variety of neurological disorders,including neurodegenerative and neuroinflammatory diseases and traumatic injury.Vascular endothelial growth factor C is the master regulator of lymphangiogenesis,a process that is critical for the maintenance of central nervous system homeostasis.In this review,we summarize current knowledge and recent advances relating to the anatomical features and immunological functions of the lymphatic system of the central nervous system and highlight its potential as a therapeutic target for neurological disorders and central nervous system repair.
基金supported by the National Natural Science Foundation of China,No. 82071374Discipline Construction Project of Guangdong Medical University,Nos. 1.13 and 4.1.19+1 种基金College Students Innovative Experimental Project in Guangdong Medical University,Nos. FYDB015, ZCDS001, ZYDB004, ZYDB016, and ZZDI001College Students’ Science and Technology Innovation Training Project,Nos. GDMU2020194, GDMU2020195, GDMU2021021, GDMU2021023, GDMU2021091, GDMU2021111 (all to HFW)。
文摘Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout(GFAPVIM) mice. However, attenuated glial scar formation in post-stroke in GFAP–/– VIM–/– mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIMmice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
基金We express heartfelt thanks to Liwei Zhang(Science China Press)for her kind help and constructive comments.This work was supported by the State Key Program of National Natural Science Foundation of China(grants 31130022,31320103903,31271037)the National Science and Technology Pillar Program of China(grant 2012BAI17B04)+4 种基金the International Cooperation in Science and Technology Projects of the Ministry of Science Technology of China(grant 2014DFA30640)the National 863 Project(grant 2012AA020506)the National Ministry of Education Special Fund for Excellent Doctoral Dissertation(grant 201356)the Special Funds for Excellent Doctoral Dissertation of Beijing,China(grant 20111000601)the Key Project of the Department of Science and Technology of Beijing(grant D090800046609004).
文摘The central nervous system(CNS)has very restricted intrinsic regeneration ability under the injury or disease condition.Innovative repair strategies,therefore,are urgently needed to facilitate tissue regeneration and functional recovery.The published tissue repair/regeneration strategies,such as cell and/or drug delivery,has been demonstrated to have some therapeutic effects on experimental animal models,but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells,difficulty in integrating with the host or restriction of blood-brain barriers to administration patterns.Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area,but also sustainably deliver bioproducts to the local injured area,thus improving the microenvironment in that area.This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration.
基金supported by the Pre-research Project(2020XYY15)of Army Medical University。
文摘Central nervous system(CNS)injury,induced by ischemic/hemorrhagic or traumatic damage,is one of the most common causes of death and long-term disability worldwide.Reactive oxygen and nitrogen species(RONS)resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury.Therefore,by targeting RONS,antioxidant therapies have been intensively explored in previous studies.However,traditional antioxidants have achieved limited success thus far,and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge.With the rapid development of nanotechnology,novel nanomaterials provided promising opportunities to address this challenge.Within these,nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability.To promote its practical application,it is important to know what has been done and what has yet to be done.This review aims to present the opportunities and challenges of nanoceria in treating CNS injury.The physicochemical properties of nanoceria and its interaction with RONS are described.The applications of nanoceria for stroke and neurotrauma treatment are summarized.The possible directions for future application of nanoceria in CNS injury treatment are proposed.
文摘Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high in- tracranial pressure following traumatic brain injuries in adults. It is a new treatment that increases survival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical pro- duction, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system damage. Although a series of pathological and physiological changes as well as potential side ef- fects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.
基金supported by the Leibniz Association,Germany,and the VELUX Foundation,Switzerland
文摘Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.
基金sponsored by the National Natural Science Foundation of China, No. 30271325the Natural Science Foundation of Jiangsu Province, No. BK2001170the National Basic Research Program of China (973 Program), No.2005CB522604
文摘Human amniotic epithelial cells were isolated from a piece of fresh amnion. Using immunocytochemical methods, we investigated the expression of neuronal phenotypes (microtubule-associated protein-2, glial fibrillary acidic protein and nestin) in human amniotic epithelial cells. The conditioned medium of human amniotic epithelial cells promoted the growth and proliferation of rat glial cells cultured in vitro, and this effect was dose-dependent. Human amniotic epithelial cells were further transplanted into the corpus striatum of healthy adult rats and the grafted cells could integrate with the host and migrate 1 2 mm along the nerve fibers in corpus callosum. Our experimental findings indicate that human amniotic epithelial cells may be a new kind of seed cells for use in neurograft.
基金supported by the National University of Singapore Graduate School for Integrative Sciences and Engineering(to BLT)
文摘Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.
基金supported by the National Natural Science Foundation of China(81371362 and 81374007)the Natural Science Foundation of Heilongjiang Province,China(H201491)+1 种基金Scientific Project of Health and Family Planning Commission of Heilongjiang Province,China(2014211,2016357)Scientific Project of Mudanjiang Medical College,China(2s201310,2s201331)
文摘Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary for intemeuronal communication. Excitotoxicity and other sec- ondary biochemical events contribute to morphological changes in neurons following injury. Evidence suggests that various transcription factors are involved in the dendritic response to injury and potential therapies. Transcription factors play critical roles in the intracellular regulation of neuronal morphological plasticity and dendritic growth and patteming. Mounting evidence supports a crucial role for epigenetic modifications via histone deacetylases, histone acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury and repair processes. Gene regulation through epigenetic modification is of great interest in neurotrauma research, and an early picture is beginning to emerge conceming how injury triggers intracellular events that modulate such responses. This review provides an overview of injury-mediated influences on transcriptional regulation through epigenefic modification, the intracellular processes involved in the morphological consequences of such changes, and potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene expression to facilitate growth and signaling through dendritic arborization following injury.