Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16...Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.展开更多
Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the ne...Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the network.Methods:In this research,the PNH and AA-related genes were screened through Online Mendelian Inheritance in Man(OMIM).The plugins and Cytoscape were used to search literature and build a protein-protein interaction network.Results:The protein-protein interaction network contains two molecular complexes that are five higher than the correlation integral values.The target genes of this study were obtained:CD59,STAT3,TERC,TNF,AKT1,C5AR1,EPO,IL6,IL10 and so on.We also found that many factors regulate biological behaviors:neutrophils,macrophages,vascular endothelial growth factor,immunoglobulin,interleukin,cytokine receptor,interleukin-6 receptor,tumor necrosis factor,and so on.This research provides a bioinformatics foundation for further explaining the mechanism of common development of both.Conclusion:This indicates that the PNH and AA is a complex process regulated by many cellular pathways and multiple genes.展开更多
AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed...AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins.A network of protein interactions was constructed by searching the primary interactions of selected proteins.The constructed network was mathematically analyzed and its biological function was examined.In addition,the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them. RESULTS:The scale-free network showing the relationship between inflammation and carcinogenesis was constructed.Mathematical analysis showed hub and bottleneck proteins,and these proteins were mostly related to immune response.The network contained pathways and proteins related to H pylori infection,such as the JAK-STAT pathway triggered by interleukins.Activation of nuclear factor (NF)-κB,TLR4,and other proteins known to function as core proteins of immune response were also found. These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle,cell maintenance and proliferation,andtranscription regulators such as BRCA1,FOS,REL,and zinc finger proteins.The extension of nodes showed interactions of the immune proteins with cancer- related proteins.One extended network,the core network,a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION:Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins.The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer.展开更多
Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network ...Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network which takes the countries as nodes and takes the trade relations as edges.The networked mining and evolution analysis can provide important references for the research on trade relations among the B&R countries and the formulation of trade policy.This paper researches and discusses the construction,statistical analysis,top networks and stability of the crude oil trade network between the B&R countries from 2001 to 2020 from the perspectives of Geo-Computation for Social Sciences(GCSS)and spatial interaction.Firstly,evolutions of out-degree,in-degree,out-strength and in-strength of the top 10 countries in the crude oil trade network are computed and analyzed.Secondly,the top network method is used to explore the evolution characteristics of hierarchical structures.And finally,the sequential evolution characteristics of the crude oil trade network stability are analyzed utilizing the network stability measure method based on the trade relationship autocorrelation function.The analysis results show that Russia has the largest out-degree and out-strength,and China has the largest in-degree and in-strength.The crude oil trade volume of the top 10 import and export networks between 2001—2020 accounts for over 90%of the total trade volume of the crude oil trade network,and the proportion remains relatively stable.However,the stability of the network showed strong fluctuations in 2009,2012 and 2014,which may be closely related to major international events in these years,which could furtherly be used to build a correlation model between network volatility and major events.This paper explores how to construct and analyze the spatial interaction network of crude oil trade and can provide references for trade relations research and trade policy formulation of B&R countries.展开更多
Marine organisms cannot grow and reproduce without proper metabolic regulation.Within a metabolic network,problems with a given link will affect the normal life activities of the organism.Many metabolic mechanisms ass...Marine organisms cannot grow and reproduce without proper metabolic regulation.Within a metabolic network,problems with a given link will affect the normal life activities of the organism.Many metabolic mechanisms associated with behaviors of Am-phioctopus fangsiao are still unclear.Moreover,as a factor affecting the normal growth of A.fangsiao,egg protection has rarely been considered in previous behavioral studies.In this research,we analyzed the transcriptome profile of gene expression in A.fangsiao egg-unprotected larvae and egg-protected larvae,and identified 818 differentially expressed genes(DEGs).We used GO and KEGG enrichment analyses to search for metabolism-related DEGs.Protein-protein interaction networks were constructed to examine the interactions between metabolism-related genes.Twenty hub genes with multiple protein-protein interaction relationships or that were involved in multiple KEGG signaling pathways were obtained and verified by quantitative RT-PCR.We first studied the effects of egg protection on the metabolism of A.fangsiao larvae by means of protein-protein interaction networks,and the results provide va-luable gene resources for understanding the metabolism of invertebrate larvae.The data serve as a foundation for further research on the egg-protecting behavior of invertebrates.展开更多
Interactivity is the most significant feature of network data,especially in social networks.Existing network embedding methods have achieved remarkable results in learning network structure and node attributes,but do ...Interactivity is the most significant feature of network data,especially in social networks.Existing network embedding methods have achieved remarkable results in learning network structure and node attributes,but do not pay attention to the multi-interaction between nodes,which limits the extraction and mining of potential deep interactions between nodes.To tackle the problem,we propose a method called Multi-Interaction heterogeneous information Network Embedding(MINE).Firstly,we introduced the multi-interactions heterogeneous information network and extracted complex heterogeneous relation sequences by the multi-interaction extraction algorithm.Secondly,we use a well-designed multi-relationship network fusion model based on the attention mechanism to fuse multiple interactional relationships.Finally,applying a multitasking model makes the learned vector contain richer semantic relationships.A large number of practical experiments prove that our proposed method outperforms existing methods on multiple data sets.展开更多
Duplication and divergence have been widely recognized as the two domi- nant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has ...Duplication and divergence have been widely recognized as the two domi- nant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has been shown that the network growth models constructed on the principle of duplication and divergence can recapture the topo- logical properties of real PPI networks. However, such network models only consider the evolution processes. How to select the model parameters with the real biological experi- mental data has not been presented. Therefore, based on the real PPI network statistical data, a yeast PPI network model is constructed. The simulation results indicate that the topological characteristics of the constructed network model are well consistent with those of real PPI networks, especially on sparseness, scale-free, small-world, hierarchical modularity, and disassortativity.展开更多
To explore the molecular mechanism of Ind-igo Naturalis in intervening chronic myelocytic leukemia (CML) under the guidance of protein-protein interaction network, the molecular docking technique and in vitro c...To explore the molecular mechanism of Ind-igo Naturalis in intervening chronic myelocytic leukemia (CML) under the guidance of protein-protein interaction network, the molecular docking technique and in vitro cell experiment were chosen. CML-related genes were obtained from the online mendelian inheritance in man database (OMIM), then String 10. 0 was used for text mining and constructing the CML protein-protein interaction network. The interaction data were input in Cytoscape 3. 4. 0 software. Plug-in CentiScaPe 2. 1 was used for implement topology analysis. Small active substances of Indigo Naturalis were obtained from a third-party database, which were optimized by Chemoffice 8. 0 and Sybyl 8. 1, then small molecular ligand library was obtained. The molecular docking was carried out by Surflex-Dock module, the key target was received after scoring. Protein-protein interaction network of CML was constructed, which was consisted of 425 nodes ( proteins) and 2 799 sides ( interactions). The key gene J.AK2 was got. CML is a polygenic disease and JAK2 is likely to be a key node.展开更多
Bats are the second-most diverse group of mammals in the world,and bat flies are their main parasites.However,significant knowledge gaps remain regarding these antagonistic interactions,especially since diverse factor...Bats are the second-most diverse group of mammals in the world,and bat flies are their main parasites.However,significant knowledge gaps remain regarding these antagonistic interactions,especially since diverse factors such as seasonality and host sex can affect their network structures.Here,we explore the influence of such factors by comparing species richness and composition of bat flies on host bats,as well as specialization and modularity of bat–bat fly interaction networks between seasons and adult host sexes.We captured bats and collected their ectoparasitic flies at 10 sampling sites in the savannahs of AmapáState,northeastern region of the Brazilian Amazon.Despite female bats being more parasitized and recording greater bat fly species richness in the wet season,neither relationship was statistically significant.The pooled network could be divided into 15 compartments with 54 links,and all subnetworks comprised>12 compartments.The total number of links ranged from 27 to 48(for the dry and wet seasons,respectively),and female and male subnetworks had 44 and 41 links,respectively.Connectance values were very low for the pooled network and for all subnetworks.Our results revealed higher bat fly species richness and abundance in the wet season,whereas specialization and modularity were higher in the dry season.Moreover,the subnetwork for female bats displayed higher specialization and modularity than the male subnetwork.Therefore,both seasonality and host sex contribute in different ways to bat–bat fly network structure.Future studies should consider these factors when evaluating bat–bat fly interaction networks.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growt...With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growth and development of organisms can be seriously affected by acidified seawater.Sepia esculenta is a mollusk with high nutritional and economic value and is widely cultured in offshore waters of China.Larvae are the early life forms of the organism and are more vulnerable to changes in the external environment.Too low pH will lead to some adverse reactions in larvae,which will affect metabolism,immune response and other life activities.In this study,we sequenced the transcriptome of S.esculenta subjected to acidified seawater stress and identified 1072differentially expressed genes(DEGs).The detected atypical expression of DEGs substantiates cellular malformation and translocation in S.esculenta under low pH stimulation.Simultaneously,this also substantiates the notable impact of ocean acidification on mollusks.These DEGs were used for functional enrichment analysis of GO and KEGG,and the top twenty items of the biological process classification in GO terms and 11 KEGG signaling pathways were significantly enriched.Finally,the constructed proteinprotein interaction network(PPI)was used to analyze protein-protein interactions,and 12 key DEGs and 3 hub genes were identified.The reliability of 12 genes was verified by quantitative RT-PCR.A comprehensive analysis of the KEGG signaling pathway and PPI revealed that ocean acidification leads to abnormalities in lipid metabolism in S.esculenta larvae,which can lead to cancer development and metastasis,accompanied by some degree of inflammation.The results of the study will help to further investigate the physiological processes of S.esculenta when stimulated by ocean acidification,and provide a reference to cope with the captive breeding of S.esculenta affected by acidification.展开更多
Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have b...Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods.展开更多
In network environments,before meaningful interactions can begin,trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy.Con...In network environments,before meaningful interactions can begin,trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy.Consequently,privacy protection and trust establishment become important in network interactions.In order to protect privacy while facilitating effective interactions,we propose a trust-based privacy protection method.Our main contributions in this paper are as follows:(1)We introduce a novel concept of k-sensitive privacy as a measure to assess the potential threat of inferring privacy;(2)According to trust and k-sensitive privacy evaluation,our proposed method can choose appropriate interaction patterns with lower degree of inferring privacy threat;(3)By considering interaction patterns for privacy protection,our proposed method can overcome the shortcomings of some current privacy protection methods which may result in low interaction success rate.Simulation results show that our method can achieve effective interactions with less privacy loss.展开更多
Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes...Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts.展开更多
Objective: To explore the main chemical compounds in Xiaoer Qixing Cha Formulae (XQCF), and investigate its mechanisms for the treatment of infantile functional dyspepsia (IFD). Methods: The chemical components were i...Objective: To explore the main chemical compounds in Xiaoer Qixing Cha Formulae (XQCF), and investigate its mechanisms for the treatment of infantile functional dyspepsia (IFD). Methods: The chemical components were identified by UPLC-QTOF/MS analytic technique. Targets of the compounds were screened from TCMSP and SWISS database, and disease targets were screened from OMIM and TTD online database. Candidate targets of compounds were mapped to the disease targets as predict therapeutic targets for XQCF. Several networks were constructed and analyzed by Cytoscape ver. 3.2.1. Meanwhile, prescription compatibility in XQCF was interpreted from the network perspective based on distribution of the number of targets. Furthermore, Gene Ontology (GO) enrichment analysis and KEGG pathway analysis were operated via Clue Go to illustrate complex relationships between the potential targets and pharmacological mechanisms. Results: A total of fifty-three compounds were recognized or tentatively characterized belonging to XQCF based on MS data and online chemical database. Sixty-three therapeutic targets were screened. AKT1, FOS, SLC6A4, COMT and 5-HT receptors were focused as therapeutic targets of XQCF. Pathways including carbohydrate digestion and absorption, serotonergic synapse, calcium signaling pathway and cAMP signaling pathway were predicted as significant regulatory pathways. The results indicated that the predicted targets and pathways related in brain-gut axis to a great extent, which could be potential pharmacological mechanism of XQCF for the treatment of IFD. Conclusions: The findings in this study provided the experimental and theoretical basis for further research for XQCF. Those also illustrated a reasonable method worth intensive study on pharmacodynamic mechanisms of TCM Formulae.展开更多
This paper analyzes the basic interactivity connotation of network teaching from the interactive definition, function, types and level etc., and established the interaction quality evaluation index system from the fou...This paper analyzes the basic interactivity connotation of network teaching from the interactive definition, function, types and level etc., and established the interaction quality evaluation index system from the four angles between student and media, the course content, teacher and peer interaction. Similarly, network instruction interaction also needs to carry on the design from the perspective of instructional design, and take full advantage of the Internet, and finally achieved good network interaction effect. Practice shows that, research on network interactive strategy significance.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancers and has a poor prognosis.Treatment of GC has remained unchanged over the past few years.AIM To investigate the potential therapeutic targets and related r...BACKGROUND Gastric cancer(GC)is one of the most common cancers and has a poor prognosis.Treatment of GC has remained unchanged over the past few years.AIM To investigate the potential therapeutic targets and related regulatory biomarkers of GC.METHODS We obtained the public GC transcriptome sequencing dataset from the Gene Expression Omnibus database.The datasets contained 348 GC tissues and 141 healthy tissues.In total,251 differentially expressed genes(DEGs)were identified,including 187 down-regulated genes and 64 up-regulated genes.The DEGs’enriched functions and pathways include Progesterone-mediated oocyte maturation,cell cycle,and oocyte meiosis,Hepatitis B,and the Hippo signaling pathway.Survival analysis showed that BUB1,MAD2L1,CCNA2,CCNB1,and BIRC5 may be associated with regulation of the cell cycle phase mitotic spindle checkpoint pathway.We selected 26 regulated genes with the aid of the protein-protein interaction network analyzed by Molecular Complex Detection.RESULTS We focused on three critical genes,which were highly expressed in GC,but negatively related to patient survival.Furthermore,we found that knockdown of Yu K et al.Biochemical analysis in GC WJCC https://www.wjgnet.com 5024 July 26,2023 Volume 11 Issue 21 BIRC5,TRIP13 or UBE2C significantly inhibited cell proliferation and induced cell apoptosis.In addition,knockdown of BIRC5,TRIP13 or UBE2C increased cellular sensitivity to cisplatin.CONCLUSION Our study identified significantly upregulated genes in GC with a poor prognosis using integrated bioinformatics methods.展开更多
The Qinling Mountains, known for their rich vegetation and diverse pollinating insects, have seen a significant decline in bee species richness and abundance over recent decades, largely due to the introduction and sp...The Qinling Mountains, known for their rich vegetation and diverse pollinating insects, have seen a significant decline in bee species richness and abundance over recent decades, largely due to the introduction and spread of Apis mellifera. This decline has caused cascading effects on the region's community structure and ecosystem stability. To improve the protection of native bees in the natural and agricultural landscape of the Qinling Mountains and its surrounding areas, we investigated 33 sampling sites within three habitats: forest, forest-agriculture ecotones, and farmland. Using a generalized linear mixing model, t-test, and other data analysis methods, we explored the impact of Apis mellifera on local pollinator bee richness, abundance, and the pollination network in different habitats in these regional areas. The results show that(1)Apis mellifera significantly negatively affects the abundance and richness of wild pollinator bees,while Apis cerana abundance is also affected by beekeeping conditions.(2)There are significant negative effects of Apis mellifera on the community structure of pollinator bees in the Qinling Mountains and its surrounding areas: the Shannon-Wiener diversity index, Pielou evenness index, and Margalef richness index of bee communities at sites with Apis mellifera influence were significantly lower than those at sites without Apis mellifera influence.(3)The underlying driver of this effect is the monopolization of flowering resources by Apis mellifera. This species tends to visit flowering plants with large nectar sources, which constitute a significant portion of the local plant community. By maintaining a dominant role in the bee-plant pollination network, Apis mellifera competitively displaces native pollinator bees, reducing their access to floral resources. This ultimately leads to a reduction in local bee-plant interactions, decreasing the complexity and stability of the pollination network. These findings highlight the need for targeted conservation efforts to protect native pollinator species and maintain the ecological balance in the Qinling Mountains.展开更多
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing gen...Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments.With the advances of the high-throughput techniques,a large number of protein-protein interactions have been produced.Therefore,to address this issue,several methods based on protein interaction network have been proposed.In this paper,we propose a shortest path-based algorithm,named SPranker,to prioritize disease-causing genes in protein interaction networks.Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes,we further propose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology(GO)annotations.SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account.The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches,ICN,VS and RWR.The experimental results show that SPranker and SPGOranker outperform ICN,VS,and RWR for the prioritization of orphan disease-causing genes.Importantly,for the case study of severe combined immunodeficiency,SPranker and SPGOranker predict several novel causal genes.展开更多
基金This study was supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2017ZX07101-002).
文摘Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.
文摘Background:To develop a protein-protein interaction network of Paroxysmal nocturnal hemoglobinuria(PNH)and Aplastic anemia(AA)based on genetic genes and to predict pathways underlying the molecular complexes in the network.Methods:In this research,the PNH and AA-related genes were screened through Online Mendelian Inheritance in Man(OMIM).The plugins and Cytoscape were used to search literature and build a protein-protein interaction network.Results:The protein-protein interaction network contains two molecular complexes that are five higher than the correlation integral values.The target genes of this study were obtained:CD59,STAT3,TERC,TNF,AKT1,C5AR1,EPO,IL6,IL10 and so on.We also found that many factors regulate biological behaviors:neutrophils,macrophages,vascular endothelial growth factor,immunoglobulin,interleukin,cytokine receptor,interleukin-6 receptor,tumor necrosis factor,and so on.This research provides a bioinformatics foundation for further explaining the mechanism of common development of both.Conclusion:This indicates that the PNH and AA is a complex process regulated by many cellular pathways and multiple genes.
文摘AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins.A network of protein interactions was constructed by searching the primary interactions of selected proteins.The constructed network was mathematically analyzed and its biological function was examined.In addition,the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them. RESULTS:The scale-free network showing the relationship between inflammation and carcinogenesis was constructed.Mathematical analysis showed hub and bottleneck proteins,and these proteins were mostly related to immune response.The network contained pathways and proteins related to H pylori infection,such as the JAK-STAT pathway triggered by interleukins.Activation of nuclear factor (NF)-κB,TLR4,and other proteins known to function as core proteins of immune response were also found. These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle,cell maintenance and proliferation,andtranscription regulators such as BRCA1,FOS,REL,and zinc finger proteins.The extension of nodes showed interactions of the immune proteins with cancer- related proteins.One extended network,the core network,a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION:Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins.The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer.
基金National Natural Science Foundation of China(No.42171448)Key Laboratory of National Geographic Census and Monitoring,Ministry of Nature Resources(No.2020NGCMZD03)。
文摘Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network which takes the countries as nodes and takes the trade relations as edges.The networked mining and evolution analysis can provide important references for the research on trade relations among the B&R countries and the formulation of trade policy.This paper researches and discusses the construction,statistical analysis,top networks and stability of the crude oil trade network between the B&R countries from 2001 to 2020 from the perspectives of Geo-Computation for Social Sciences(GCSS)and spatial interaction.Firstly,evolutions of out-degree,in-degree,out-strength and in-strength of the top 10 countries in the crude oil trade network are computed and analyzed.Secondly,the top network method is used to explore the evolution characteristics of hierarchical structures.And finally,the sequential evolution characteristics of the crude oil trade network stability are analyzed utilizing the network stability measure method based on the trade relationship autocorrelation function.The analysis results show that Russia has the largest out-degree and out-strength,and China has the largest in-degree and in-strength.The crude oil trade volume of the top 10 import and export networks between 2001—2020 accounts for over 90%of the total trade volume of the crude oil trade network,and the proportion remains relatively stable.However,the stability of the network showed strong fluctuations in 2009,2012 and 2014,which may be closely related to major international events in these years,which could furtherly be used to build a correlation model between network volatility and major events.This paper explores how to construct and analyze the spatial interaction network of crude oil trade and can provide references for trade relations research and trade policy formulation of B&R countries.
基金supported by the earmarked fund for the Modern Agro-industry Technology Research System(No.CARS-49)the Natural Science Foundation of Shan-dong Province(No.ZR2019BC052)the National Natural Science Foundation of China(No.42006077).
文摘Marine organisms cannot grow and reproduce without proper metabolic regulation.Within a metabolic network,problems with a given link will affect the normal life activities of the organism.Many metabolic mechanisms associated with behaviors of Am-phioctopus fangsiao are still unclear.Moreover,as a factor affecting the normal growth of A.fangsiao,egg protection has rarely been considered in previous behavioral studies.In this research,we analyzed the transcriptome profile of gene expression in A.fangsiao egg-unprotected larvae and egg-protected larvae,and identified 818 differentially expressed genes(DEGs).We used GO and KEGG enrichment analyses to search for metabolism-related DEGs.Protein-protein interaction networks were constructed to examine the interactions between metabolism-related genes.Twenty hub genes with multiple protein-protein interaction relationships or that were involved in multiple KEGG signaling pathways were obtained and verified by quantitative RT-PCR.We first studied the effects of egg protection on the metabolism of A.fangsiao larvae by means of protein-protein interaction networks,and the results provide va-luable gene resources for understanding the metabolism of invertebrate larvae.The data serve as a foundation for further research on the egg-protecting behavior of invertebrates.
基金This work is supported by the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201714)Weihai Science and Technology Development Program(2016DXGJMS15)Key Research and Development Program in Shandong Provincial(2017GGX90103).
文摘Interactivity is the most significant feature of network data,especially in social networks.Existing network embedding methods have achieved remarkable results in learning network structure and node attributes,but do not pay attention to the multi-interaction between nodes,which limits the extraction and mining of potential deep interactions between nodes.To tackle the problem,we propose a method called Multi-Interaction heterogeneous information Network Embedding(MINE).Firstly,we introduced the multi-interactions heterogeneous information network and extracted complex heterogeneous relation sequences by the multi-interaction extraction algorithm.Secondly,we use a well-designed multi-relationship network fusion model based on the attention mechanism to fuse multiple interactional relationships.Finally,applying a multitasking model makes the learned vector contain richer semantic relationships.A large number of practical experiments prove that our proposed method outperforms existing methods on multiple data sets.
基金Project supported by the National Natural Science Foundation of China(No.11172158)
文摘Duplication and divergence have been widely recognized as the two domi- nant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has been shown that the network growth models constructed on the principle of duplication and divergence can recapture the topo- logical properties of real PPI networks. However, such network models only consider the evolution processes. How to select the model parameters with the real biological experi- mental data has not been presented. Therefore, based on the real PPI network statistical data, a yeast PPI network model is constructed. The simulation results indicate that the topological characteristics of the constructed network model are well consistent with those of real PPI networks, especially on sparseness, scale-free, small-world, hierarchical modularity, and disassortativity.
文摘To explore the molecular mechanism of Ind-igo Naturalis in intervening chronic myelocytic leukemia (CML) under the guidance of protein-protein interaction network, the molecular docking technique and in vitro cell experiment were chosen. CML-related genes were obtained from the online mendelian inheritance in man database (OMIM), then String 10. 0 was used for text mining and constructing the CML protein-protein interaction network. The interaction data were input in Cytoscape 3. 4. 0 software. Plug-in CentiScaPe 2. 1 was used for implement topology analysis. Small active substances of Indigo Naturalis were obtained from a third-party database, which were optimized by Chemoffice 8. 0 and Sybyl 8. 1, then small molecular ligand library was obtained. The molecular docking was carried out by Surflex-Dock module, the key target was received after scoring. Protein-protein interaction network of CML was constructed, which was consisted of 425 nodes ( proteins) and 2 799 sides ( interactions). The key gene J.AK2 was got. CML is a polygenic disease and JAK2 is likely to be a key node.
基金P.M.was supported by a master’s scholarship and currently,is supported by doctoral scholarships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)Brazil(process number 88887.662021/2022-00)+4 种基金B.S.X.was supported by doctoral scholarships from CAPES,Brazil.W.D.C.was supported by post-doctoral funding(PNPD/CAPES)until early 2020.Currently,W.D.C.is supported by“Ayudas Maria Zambrano”(CA3/RSUE/2021-00197)funded by the Spanish Ministry of UniversitiesG.L.U.was supported by Paraiba State Research Foundation(FAPESQ)under a doctoral scholarship from Grant No.518/18 and by PDPG-Amazônia Legal(process number 88887.834037/2023-00)G.G.was supported by CNPq(process number 306216/2018)Universidade Federal de Mato Grosso do Sul.J.J.T.received a research productivity scholarship from CNPq(process number 316281/2021-22).
文摘Bats are the second-most diverse group of mammals in the world,and bat flies are their main parasites.However,significant knowledge gaps remain regarding these antagonistic interactions,especially since diverse factors such as seasonality and host sex can affect their network structures.Here,we explore the influence of such factors by comparing species richness and composition of bat flies on host bats,as well as specialization and modularity of bat–bat fly interaction networks between seasons and adult host sexes.We captured bats and collected their ectoparasitic flies at 10 sampling sites in the savannahs of AmapáState,northeastern region of the Brazilian Amazon.Despite female bats being more parasitized and recording greater bat fly species richness in the wet season,neither relationship was statistically significant.The pooled network could be divided into 15 compartments with 54 links,and all subnetworks comprised>12 compartments.The total number of links ranged from 27 to 48(for the dry and wet seasons,respectively),and female and male subnetworks had 44 and 41 links,respectively.Connectance values were very low for the pooled network and for all subnetworks.Our results revealed higher bat fly species richness and abundance in the wet season,whereas specialization and modularity were higher in the dry season.Moreover,the subnetwork for female bats displayed higher specialization and modularity than the male subnetwork.Therefore,both seasonality and host sex contribute in different ways to bat–bat fly network structure.Future studies should consider these factors when evaluating bat–bat fly interaction networks.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
基金funded by the Ministry of Agriculture of the People’s Republic of China (No.CARS-49)。
文摘With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growth and development of organisms can be seriously affected by acidified seawater.Sepia esculenta is a mollusk with high nutritional and economic value and is widely cultured in offshore waters of China.Larvae are the early life forms of the organism and are more vulnerable to changes in the external environment.Too low pH will lead to some adverse reactions in larvae,which will affect metabolism,immune response and other life activities.In this study,we sequenced the transcriptome of S.esculenta subjected to acidified seawater stress and identified 1072differentially expressed genes(DEGs).The detected atypical expression of DEGs substantiates cellular malformation and translocation in S.esculenta under low pH stimulation.Simultaneously,this also substantiates the notable impact of ocean acidification on mollusks.These DEGs were used for functional enrichment analysis of GO and KEGG,and the top twenty items of the biological process classification in GO terms and 11 KEGG signaling pathways were significantly enriched.Finally,the constructed proteinprotein interaction network(PPI)was used to analyze protein-protein interactions,and 12 key DEGs and 3 hub genes were identified.The reliability of 12 genes was verified by quantitative RT-PCR.A comprehensive analysis of the KEGG signaling pathway and PPI revealed that ocean acidification leads to abnormalities in lipid metabolism in S.esculenta larvae,which can lead to cancer development and metastasis,accompanied by some degree of inflammation.The results of the study will help to further investigate the physiological processes of S.esculenta when stimulated by ocean acidification,and provide a reference to cope with the captive breeding of S.esculenta affected by acidification.
基金Project supported by the Gansu Province Industrial Support Plan (Grant No.2023CYZC-25)the Natural Science Foundation of Gansu Province (Grant No.23JRRA770)the National Natural Science Foundation of China (Grant No.62162040)。
文摘Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods.
基金research funding from the Beijing Education Commission under Grant No. KM201010005027National Natural Science Foundation of China under Grant No. 61074128National Social Science Foundation of China under Grant No. 07CTQ010
文摘In network environments,before meaningful interactions can begin,trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy.Consequently,privacy protection and trust establishment become important in network interactions.In order to protect privacy while facilitating effective interactions,we propose a trust-based privacy protection method.Our main contributions in this paper are as follows:(1)We introduce a novel concept of k-sensitive privacy as a measure to assess the potential threat of inferring privacy;(2)According to trust and k-sensitive privacy evaluation,our proposed method can choose appropriate interaction patterns with lower degree of inferring privacy threat;(3)By considering interaction patterns for privacy protection,our proposed method can overcome the shortcomings of some current privacy protection methods which may result in low interaction success rate.Simulation results show that our method can achieve effective interactions with less privacy loss.
基金National Natural Science Foundation of China,No.31971180 and No.11474013.
文摘Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts.
基金Financial supported by the National Natural Science Foundation of China (Grant No.81673872and 81460659)Department of Education Guangdong of Province (Grant No. YQ2013043)Department of Science and Technology of Tibet autonomous region (Grant No.2016ZR-ZY-01).
文摘Objective: To explore the main chemical compounds in Xiaoer Qixing Cha Formulae (XQCF), and investigate its mechanisms for the treatment of infantile functional dyspepsia (IFD). Methods: The chemical components were identified by UPLC-QTOF/MS analytic technique. Targets of the compounds were screened from TCMSP and SWISS database, and disease targets were screened from OMIM and TTD online database. Candidate targets of compounds were mapped to the disease targets as predict therapeutic targets for XQCF. Several networks were constructed and analyzed by Cytoscape ver. 3.2.1. Meanwhile, prescription compatibility in XQCF was interpreted from the network perspective based on distribution of the number of targets. Furthermore, Gene Ontology (GO) enrichment analysis and KEGG pathway analysis were operated via Clue Go to illustrate complex relationships between the potential targets and pharmacological mechanisms. Results: A total of fifty-three compounds were recognized or tentatively characterized belonging to XQCF based on MS data and online chemical database. Sixty-three therapeutic targets were screened. AKT1, FOS, SLC6A4, COMT and 5-HT receptors were focused as therapeutic targets of XQCF. Pathways including carbohydrate digestion and absorption, serotonergic synapse, calcium signaling pathway and cAMP signaling pathway were predicted as significant regulatory pathways. The results indicated that the predicted targets and pathways related in brain-gut axis to a great extent, which could be potential pharmacological mechanism of XQCF for the treatment of IFD. Conclusions: The findings in this study provided the experimental and theoretical basis for further research for XQCF. Those also illustrated a reasonable method worth intensive study on pharmacodynamic mechanisms of TCM Formulae.
文摘This paper analyzes the basic interactivity connotation of network teaching from the interactive definition, function, types and level etc., and established the interaction quality evaluation index system from the four angles between student and media, the course content, teacher and peer interaction. Similarly, network instruction interaction also needs to carry on the design from the perspective of instructional design, and take full advantage of the Internet, and finally achieved good network interaction effect. Practice shows that, research on network interactive strategy significance.
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancers and has a poor prognosis.Treatment of GC has remained unchanged over the past few years.AIM To investigate the potential therapeutic targets and related regulatory biomarkers of GC.METHODS We obtained the public GC transcriptome sequencing dataset from the Gene Expression Omnibus database.The datasets contained 348 GC tissues and 141 healthy tissues.In total,251 differentially expressed genes(DEGs)were identified,including 187 down-regulated genes and 64 up-regulated genes.The DEGs’enriched functions and pathways include Progesterone-mediated oocyte maturation,cell cycle,and oocyte meiosis,Hepatitis B,and the Hippo signaling pathway.Survival analysis showed that BUB1,MAD2L1,CCNA2,CCNB1,and BIRC5 may be associated with regulation of the cell cycle phase mitotic spindle checkpoint pathway.We selected 26 regulated genes with the aid of the protein-protein interaction network analyzed by Molecular Complex Detection.RESULTS We focused on three critical genes,which were highly expressed in GC,but negatively related to patient survival.Furthermore,we found that knockdown of Yu K et al.Biochemical analysis in GC WJCC https://www.wjgnet.com 5024 July 26,2023 Volume 11 Issue 21 BIRC5,TRIP13 or UBE2C significantly inhibited cell proliferation and induced cell apoptosis.In addition,knockdown of BIRC5,TRIP13 or UBE2C increased cellular sensitivity to cisplatin.CONCLUSION Our study identified significantly upregulated genes in GC with a poor prognosis using integrated bioinformatics methods.
基金funded by the National Key R&D Program of China (2022YFE0115200)the Biodiversity Survey and the Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006)the National Animal Collection Resource Center, China。
文摘The Qinling Mountains, known for their rich vegetation and diverse pollinating insects, have seen a significant decline in bee species richness and abundance over recent decades, largely due to the introduction and spread of Apis mellifera. This decline has caused cascading effects on the region's community structure and ecosystem stability. To improve the protection of native bees in the natural and agricultural landscape of the Qinling Mountains and its surrounding areas, we investigated 33 sampling sites within three habitats: forest, forest-agriculture ecotones, and farmland. Using a generalized linear mixing model, t-test, and other data analysis methods, we explored the impact of Apis mellifera on local pollinator bee richness, abundance, and the pollination network in different habitats in these regional areas. The results show that(1)Apis mellifera significantly negatively affects the abundance and richness of wild pollinator bees,while Apis cerana abundance is also affected by beekeeping conditions.(2)There are significant negative effects of Apis mellifera on the community structure of pollinator bees in the Qinling Mountains and its surrounding areas: the Shannon-Wiener diversity index, Pielou evenness index, and Margalef richness index of bee communities at sites with Apis mellifera influence were significantly lower than those at sites without Apis mellifera influence.(3)The underlying driver of this effect is the monopolization of flowering resources by Apis mellifera. This species tends to visit flowering plants with large nectar sources, which constitute a significant portion of the local plant community. By maintaining a dominant role in the bee-plant pollination network, Apis mellifera competitively displaces native pollinator bees, reducing their access to floral resources. This ultimately leads to a reduction in local bee-plant interactions, decreasing the complexity and stability of the pollination network. These findings highlight the need for targeted conservation efforts to protect native pollinator species and maintain the ecological balance in the Qinling Mountains.
基金supported in part by the National Natural Science Foundation of China(61370024,61428209,61232001)Program for New Century Excellent Talents in University(NCET-12-0547)
文摘Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments.With the advances of the high-throughput techniques,a large number of protein-protein interactions have been produced.Therefore,to address this issue,several methods based on protein interaction network have been proposed.In this paper,we propose a shortest path-based algorithm,named SPranker,to prioritize disease-causing genes in protein interaction networks.Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes,we further propose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology(GO)annotations.SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account.The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches,ICN,VS and RWR.The experimental results show that SPranker and SPGOranker outperform ICN,VS,and RWR for the prioritization of orphan disease-causing genes.Importantly,for the case study of severe combined immunodeficiency,SPranker and SPGOranker predict several novel causal genes.