Secure key distribution among classical parties is impossible both between two parties and in a network. In this paper, we present a quantum key distribution (QKD) protocol to distribute secure key bits among one qu...Secure key distribution among classical parties is impossible both between two parties and in a network. In this paper, we present a quantum key distribution (QKD) protocol to distribute secure key bits among one quantum party and numerous classical parties who have no quantum capacity. We prove that our protocol is completely robust, i.e., any eavesdropping attack should be detected with nonzero probability. Our calculations show that our protocol may be secure against Eve's symmetrically individual attack.展开更多
Cyberattacks on the Industrial Control System(ICS)have recently been increasing,made more intelligent by advancing technologies.As such,cybersecurity for such systems is attracting attention.As a core element of contr...Cyberattacks on the Industrial Control System(ICS)have recently been increasing,made more intelligent by advancing technologies.As such,cybersecurity for such systems is attracting attention.As a core element of control devices,the Programmable Logic Controller(PLC)in an ICS carries out on-site control over the ICS.A cyberattack on the PLC will cause damages on the overall ICS,with Stuxnet and Duqu as the most representative cases.Thus,cybersecurity for PLCs is considered essential,and many researchers carry out a variety of analyses on the vulnerabilities of PLCs as part of preemptive efforts against attacks.In this study,a vulnerability analysis was conducted on the XGB PLC.Security vulnerabilities were identified by analyzing the network protocols and memory structure of PLCs and were utilized to launch replay attack,memory modulation attack,and FTP/Web service account theft for the verification of the results.Based on the results,the attacks were proven to be able to cause the PLC to malfunction and disable it,and the identified vulnerabilities were defined.展开更多
Network protocol software is usually characterized by complicated functions and a vast state space.In this type of program,a massive number of stateful variables that are used to represent the evolution of the states ...Network protocol software is usually characterized by complicated functions and a vast state space.In this type of program,a massive number of stateful variables that are used to represent the evolution of the states and store some information about the sessions are prone to potentialflaws caused by violations of protocol specification requirements and program logic.Discovering such variables is significant in discovering and exploiting vulnerabilities in protocol software,and still needs massive manual verifications.In this paper,we propose a novel method that could automatically discover the use of stateful variables in network protocol software.The core idea is that a stateful variable features information of the communication entities and the software states,so it will exist in the form of a global or static variable during program execution.Based on recording and replaying a protocol program’s execution,varieties of variables in the life cycle can be tracked with the technique of dynamic instrument.We draw up some rules from multiple dimensions by taking full advantage of the existing vulnerability knowledge to determine whether the data stored in critical memory areas have stateful characteristics.We also implement a prototype system that can discover stateful variables automatically and then perform it on nine programs in Pro FuzzBench and two complex real-world software programs.With the help of available open-source code,the evaluation results show that the average true positive rate(TPR)can reach 82%and the average precision can be approximately up to 96%.展开更多
To improve the efficiency and coverage of stateful network protocol fuzzing, this paper proposes a new method, using a rule-based state machine and a stateful rule tree to guide the generation of fuzz testing data. Th...To improve the efficiency and coverage of stateful network protocol fuzzing, this paper proposes a new method, using a rule-based state machine and a stateful rule tree to guide the generation of fuzz testing data. The method first builds a rule-based state machine model as a formal description of the states of a network protocol. This removes safety paths, to cut down the scale of the state space. Then it uses a stateful rule tree to describe the relationship between states and messages, and then remove useless items from it. According to the message sequence obtained by the analysis of paths using the stateful rule tree and the protocol specification, an abstract data model of test case generation is defined. The fuzz testing data is produced by various generation algorithms through filling data in the fields of the data model. Using the rule-based state machine and the stateful rule tree, the quantity of test data can be reduced. Experimental results indicate that our method can discover the same vulnerabilities as traditional approaches, using less test data, while optimizing test data generation and improving test efficiency.展开更多
Network protocols are divided into stateless and stateful. Stateful network protocols have complex communication interactions and state transitions. However, the existing network protocol fuzzing does not support stat...Network protocols are divided into stateless and stateful. Stateful network protocols have complex communication interactions and state transitions. However, the existing network protocol fuzzing does not support state transitions very well. This paper focuses on this issue and proposes the Semi-valid Fuzzing for the Stateful Network Protocol (SFSNP). The SFSNP analyzes protocol interactions and builds an extended finite state machine with a path marker for the network protocol; then it obtains test sequences of the extended finite state machine, and further performs the mutation operation using the semi-valid algorithm for each state transition in the test sequences; finally, it obtains fuzzing sequences. Moreover, because different test sequences may have the same state transitions, the SFSNP uses the state transition marking algorithm to reduce redundant test cases. By using the stateful rule tree of the protocol, the SFSNP extracts the constraints in the protocol specifications to construct semi-valid fuzz testing cases within the sub-protocol domain, and finally forms fuzzing sequences. Experimental results indicate that the SFSNP is reasonably effective at reducing the quantity of generated test cases and improving the quality of fuzz testing cases. The SFSNP can reduce redundancy and shorten testing time.展开更多
This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering...This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.展开更多
Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource...Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.展开更多
A Light-Weight Simple Network Management Protocol (LW-SNMP) for the wireless sensor network is proposed, which is a kind of hierarchical network management system including a sink manager, cluster proxies, and node ag...A Light-Weight Simple Network Management Protocol (LW-SNMP) for the wireless sensor network is proposed, which is a kind of hierarchical network management system including a sink manager, cluster proxies, and node agents. Considering the resource limitations on the sensor nodes, we design new management messages, new data types and new management information base completely. The management messages between the cluster proxy and node agents are delivered as normal data packets. The experiment results show that LW-SNMP can meet the management demands in the resource-limited wireless sensor networks and has a good performance in stability, effectiveness of memory, extensibility than the traditional Simple Network Management Protocol (SNMP).展开更多
LEACH (Low-Encrgy Adaptive Clustering Hi-erarchy) protocol is a basic clustering-based routing protocol of sensor networks. In this paper, we present the design of SLEACH, asecure extension for the LEACH protocol. We ...LEACH (Low-Encrgy Adaptive Clustering Hi-erarchy) protocol is a basic clustering-based routing protocol of sensor networks. In this paper, we present the design of SLEACH, asecure extension for the LEACH protocol. We divide SLEACH into four phases and fit inexpensivecryplp-graphic operations to each part of the protocol functionality to create an efficient,practical protocol. Then we give security analyses of SLEACH. Our security analyses show that ourschemeis robust against any external attacker or compromised nodes in the sensor network.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
This paper discusses a transport protocol and its formal description techniques for local network. The transport layer function, the transport services and a transport protocol design in a local network architecture m...This paper discusses a transport protocol and its formal description techniques for local network. The transport layer function, the transport services and a transport protocol design in a local network architecture model are presented. A transport protocol specification using the finite state automata (FSA) is given. The correctness of the protocol is verified by using the reachability tree technique with respect to the protocol properties of completeness, deadlock and livelock freeness, termination and reachability.展开更多
Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce...Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.展开更多
The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical laye...The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical layer gains of FD nodes to the throughput gain of wireless FD networks, but pay little attention to the energy consumptions of FD nodes. In this paper, we propose an energy efficient FD MAC protocol. According to the values of self-interference cancellation coefficients corresponding to the nodes of each FD pair and the signal propagation attenuation, the proposed protocol can adaptively select the communication mode of the FD pair between the full-duplex and half-duplex. Also, the minimum transmit power for FD nodes can be obtained to achieve high energy efficiency. We develop an analytical model to characterize the performance of our protocol. The numerical results show that the proposed MAC protocol can optimize the system throughput and reduce the transmission energy consumptions of nodes simultaneously as compared with those of the existing works.展开更多
This paper uses a correlation dimension based nonlinear analysis approach to analyse the dynamics of network traffics with three different application protocols-HTTP, FTP and SMTP. First, the phase space is reconstruc...This paper uses a correlation dimension based nonlinear analysis approach to analyse the dynamics of network traffics with three different application protocols-HTTP, FTP and SMTP. First, the phase space is reconstructed and the embedding parameters are obtained by the mutual information method. Secondly, the correlation dimensions of three different traffics are calculated and the results of analysis have demonstrated that the dynamics of the three different application protocol traffics is different from each other in nature, i.e. HTTP and FTP traffics are chaotic, furthermore, the former is more complex than the later; on the other hand, SMTP traffic is stochastic. It is shown that correlation dimension approach is an efficient method to understand and to characterize the nonlinear dynamics of HTTP, FTP and SMTP protocol network traffics. This analysis provided insight into and a more accurate understanding of nonlinear dynamics of internet traffics which have a complex mixture of chaotic and stochastic components.展开更多
Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide...Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide the application. Theoretical analysis and comparison are one of the key steps in the protocol research. Restricted by irreversible factors of power and others, lifetime of wireless sensor networks is very short. In this paper, we analyze and compare the characteristics and application fields of existing protocols. On the basis of that, this paper mainly proposes an improved directed diffusion exploring the phase of reinforcing path, which chooses the way to strengthen the path after evaluating the critical factors. It was determined by simulation that improved directed diffusion has a higher transmission rate, and it satisfies the requirements, which balancing the energy consumption and prolonging the lifetime.展开更多
A dynamic protocol stack(DPS) for ad hoc networks, together with a protocol stack construction scheme that is modeled as a multiconstrained knapsack problem is proposed. Compared to the traditional static protocol sta...A dynamic protocol stack(DPS) for ad hoc networks, together with a protocol stack construction scheme that is modeled as a multiconstrained knapsack problem is proposed. Compared to the traditional static protocol stack, DPS operates in a dynamic and adaptive manner and is scalable to network condition changes. In addition, a protocol construction algorithm is proposed to dynamically construct of the protocol stack each network node. Simulation results show that, the processing and forwarding performance of our scheme is close to 1 Gb/s, and the performance of our algorithm is close to that of the classical algorithms with much lower complexity.展开更多
The exploitation of Wireless Sensor Networks (WSN) is constrained by limited power, low computing power and storage and short-range radio transmission. Many routing protocols respecting these constraints were develope...The exploitation of Wireless Sensor Networks (WSN) is constrained by limited power, low computing power and storage and short-range radio transmission. Many routing protocols respecting these constraints were developed but, it still lacks formal and standardized solutions being able to help in their configuration. The configuration management that responds to this concern is very important in this type of network. It consists of the definition of data models to configure and is very necessary for the good network performance. Tangible results were obtained in traditional networks with the emergence of NETCONF and YANG standards, but on the best of our humble knowledge there are none yet in WSNs. We propose in this paper wsn-routing-protocol, a YANG data model for routing protocols configuration in WSNs. Following our model, we propose two YANG configuration data models based on the latter: they are respectively aodv for AODV and rpl for RPL.展开更多
Wireless sensor network has been used as a landslide monitoring tool for more than one decade. The robustness of the network is important as the systems need to survive in harsh conditions. In this paper, we consider ...Wireless sensor network has been used as a landslide monitoring tool for more than one decade. The robustness of the network is important as the systems need to survive in harsh conditions. In this paper, we consider the living time of the sensor network under the influences of the small-scale landslide. We investigate the performance of famous energy-efficient routing protocol PEGASIS in both landslide case and non-landslide case. Genetic Algorithm is also applied to enhance the effectiveness of PEGASIS. The simulation results in this paper showed that the Genetic Algorithm helps to delay the first node death if it is used at the beginning of data transmission while being used every round helps to prolong last node death slightly. The impact of the Genetic Algorithm on energy usage and route length is also examined.<span><span><span> </span></span></span><span><span><span>Under the effect of landslide, with only 70% of energy </span></span></span><span><span><span>are</span></span></span><span><span><span> spent, the simulated protocols reduced around 30% equivalent route length while managed to keep the living time up the network up to 90.76%, comparing to cases with no landslide.</span></span></span>展开更多
In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic ...In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10774039)
文摘Secure key distribution among classical parties is impossible both between two parties and in a network. In this paper, we present a quantum key distribution (QKD) protocol to distribute secure key bits among one quantum party and numerous classical parties who have no quantum capacity. We prove that our protocol is completely robust, i.e., any eavesdropping attack should be detected with nonzero probability. Our calculations show that our protocol may be secure against Eve's symmetrically individual attack.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT:Ministry of Science and ICT)(Nos.NRF-2016M2A8A4952280 and NRF-2020R1A2C1012187).
文摘Cyberattacks on the Industrial Control System(ICS)have recently been increasing,made more intelligent by advancing technologies.As such,cybersecurity for such systems is attracting attention.As a core element of control devices,the Programmable Logic Controller(PLC)in an ICS carries out on-site control over the ICS.A cyberattack on the PLC will cause damages on the overall ICS,with Stuxnet and Duqu as the most representative cases.Thus,cybersecurity for PLCs is considered essential,and many researchers carry out a variety of analyses on the vulnerabilities of PLCs as part of preemptive efforts against attacks.In this study,a vulnerability analysis was conducted on the XGB PLC.Security vulnerabilities were identified by analyzing the network protocols and memory structure of PLCs and were utilized to launch replay attack,memory modulation attack,and FTP/Web service account theft for the verification of the results.Based on the results,the attacks were proven to be able to cause the PLC to malfunction and disable it,and the identified vulnerabilities were defined.
基金Project supported by the National Natural Science Foundation of China(Nos.61902416 and 61902412)the Natural Science Foundation of Hunan Province,China(No.2019JJ50729)。
文摘Network protocol software is usually characterized by complicated functions and a vast state space.In this type of program,a massive number of stateful variables that are used to represent the evolution of the states and store some information about the sessions are prone to potentialflaws caused by violations of protocol specification requirements and program logic.Discovering such variables is significant in discovering and exploiting vulnerabilities in protocol software,and still needs massive manual verifications.In this paper,we propose a novel method that could automatically discover the use of stateful variables in network protocol software.The core idea is that a stateful variable features information of the communication entities and the software states,so it will exist in the form of a global or static variable during program execution.Based on recording and replaying a protocol program’s execution,varieties of variables in the life cycle can be tracked with the technique of dynamic instrument.We draw up some rules from multiple dimensions by taking full advantage of the existing vulnerability knowledge to determine whether the data stored in critical memory areas have stateful characteristics.We also implement a prototype system that can discover stateful variables automatically and then perform it on nine programs in Pro FuzzBench and two complex real-world software programs.With the help of available open-source code,the evaluation results show that the average true positive rate(TPR)can reach 82%and the average precision can be approximately up to 96%.
基金supported by the Key Project of National Defense Basic Research Program of China (No.B1120132031)supported by the Cultivation and Development Program for Technology Innovation Base of Beijing Municipal Science and Technology Commission (No.Z151100001615034)
文摘To improve the efficiency and coverage of stateful network protocol fuzzing, this paper proposes a new method, using a rule-based state machine and a stateful rule tree to guide the generation of fuzz testing data. The method first builds a rule-based state machine model as a formal description of the states of a network protocol. This removes safety paths, to cut down the scale of the state space. Then it uses a stateful rule tree to describe the relationship between states and messages, and then remove useless items from it. According to the message sequence obtained by the analysis of paths using the stateful rule tree and the protocol specification, an abstract data model of test case generation is defined. The fuzz testing data is produced by various generation algorithms through filling data in the fields of the data model. Using the rule-based state machine and the stateful rule tree, the quantity of test data can be reduced. Experimental results indicate that our method can discover the same vulnerabilities as traditional approaches, using less test data, while optimizing test data generation and improving test efficiency.
基金supported by the National Key R&D Program of China(No.2016YFB0800700)
文摘Network protocols are divided into stateless and stateful. Stateful network protocols have complex communication interactions and state transitions. However, the existing network protocol fuzzing does not support state transitions very well. This paper focuses on this issue and proposes the Semi-valid Fuzzing for the Stateful Network Protocol (SFSNP). The SFSNP analyzes protocol interactions and builds an extended finite state machine with a path marker for the network protocol; then it obtains test sequences of the extended finite state machine, and further performs the mutation operation using the semi-valid algorithm for each state transition in the test sequences; finally, it obtains fuzzing sequences. Moreover, because different test sequences may have the same state transitions, the SFSNP uses the state transition marking algorithm to reduce redundant test cases. By using the stateful rule tree of the protocol, the SFSNP extracts the constraints in the protocol specifications to construct semi-valid fuzz testing cases within the sub-protocol domain, and finally forms fuzzing sequences. Experimental results indicate that the SFSNP is reasonably effective at reducing the quantity of generated test cases and improving the quality of fuzz testing cases. The SFSNP can reduce redundancy and shorten testing time.
文摘This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.
文摘Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.
基金supported by the Fundamental Research Funds for the Central Universities under grant No.2009JBM007supported by the National Natural Science Foundation of China under Grants No. 60802016, 60833002 and 60972010
文摘A Light-Weight Simple Network Management Protocol (LW-SNMP) for the wireless sensor network is proposed, which is a kind of hierarchical network management system including a sink manager, cluster proxies, and node agents. Considering the resource limitations on the sensor nodes, we design new management messages, new data types and new management information base completely. The management messages between the cluster proxy and node agents are delivered as normal data packets. The experiment results show that LW-SNMP can meet the management demands in the resource-limited wireless sensor networks and has a good performance in stability, effectiveness of memory, extensibility than the traditional Simple Network Management Protocol (SNMP).
文摘LEACH (Low-Encrgy Adaptive Clustering Hi-erarchy) protocol is a basic clustering-based routing protocol of sensor networks. In this paper, we present the design of SLEACH, asecure extension for the LEACH protocol. We divide SLEACH into four phases and fit inexpensivecryplp-graphic operations to each part of the protocol functionality to create an efficient,practical protocol. Then we give security analyses of SLEACH. Our security analyses show that ourschemeis robust against any external attacker or compromised nodes in the sensor network.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
文摘This paper discusses a transport protocol and its formal description techniques for local network. The transport layer function, the transport services and a transport protocol design in a local network architecture model are presented. A transport protocol specification using the finite state automata (FSA) is given. The correctness of the protocol is verified by using the reachability tree technique with respect to the protocol properties of completeness, deadlock and livelock freeness, termination and reachability.
基金supported by the National Basic Research Program of China (973 Program) (2010CB731800)the National Natural Science Foundation of China (60934003+2 种基金 60974123 60804010)the Hebei Provincial Educational Foundation of China (2008147)
文摘Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.
基金supported by the National Natural Science Foundation of China (No. 61401330)Natural Science Foundation of Shaanxi Province of China (No. 2016JQ6027)
文摘The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical layer gains of FD nodes to the throughput gain of wireless FD networks, but pay little attention to the energy consumptions of FD nodes. In this paper, we propose an energy efficient FD MAC protocol. According to the values of self-interference cancellation coefficients corresponding to the nodes of each FD pair and the signal propagation attenuation, the proposed protocol can adaptively select the communication mode of the FD pair between the full-duplex and half-duplex. Also, the minimum transmit power for FD nodes can be obtained to achieve high energy efficiency. We develop an analytical model to characterize the performance of our protocol. The numerical results show that the proposed MAC protocol can optimize the system throughput and reduce the transmission energy consumptions of nodes simultaneously as compared with those of the existing works.
基金Project supported in part by the National High Technology Research and Development Program of China (Grant No. 2007AA01Z480)
文摘This paper uses a correlation dimension based nonlinear analysis approach to analyse the dynamics of network traffics with three different application protocols-HTTP, FTP and SMTP. First, the phase space is reconstructed and the embedding parameters are obtained by the mutual information method. Secondly, the correlation dimensions of three different traffics are calculated and the results of analysis have demonstrated that the dynamics of the three different application protocol traffics is different from each other in nature, i.e. HTTP and FTP traffics are chaotic, furthermore, the former is more complex than the later; on the other hand, SMTP traffic is stochastic. It is shown that correlation dimension approach is an efficient method to understand and to characterize the nonlinear dynamics of HTTP, FTP and SMTP protocol network traffics. This analysis provided insight into and a more accurate understanding of nonlinear dynamics of internet traffics which have a complex mixture of chaotic and stochastic components.
文摘Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide the application. Theoretical analysis and comparison are one of the key steps in the protocol research. Restricted by irreversible factors of power and others, lifetime of wireless sensor networks is very short. In this paper, we analyze and compare the characteristics and application fields of existing protocols. On the basis of that, this paper mainly proposes an improved directed diffusion exploring the phase of reinforcing path, which chooses the way to strengthen the path after evaluating the critical factors. It was determined by simulation that improved directed diffusion has a higher transmission rate, and it satisfies the requirements, which balancing the energy consumption and prolonging the lifetime.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX03006003)the ZTE Research and Development Fund
文摘A dynamic protocol stack(DPS) for ad hoc networks, together with a protocol stack construction scheme that is modeled as a multiconstrained knapsack problem is proposed. Compared to the traditional static protocol stack, DPS operates in a dynamic and adaptive manner and is scalable to network condition changes. In addition, a protocol construction algorithm is proposed to dynamically construct of the protocol stack each network node. Simulation results show that, the processing and forwarding performance of our scheme is close to 1 Gb/s, and the performance of our algorithm is close to that of the classical algorithms with much lower complexity.
文摘The exploitation of Wireless Sensor Networks (WSN) is constrained by limited power, low computing power and storage and short-range radio transmission. Many routing protocols respecting these constraints were developed but, it still lacks formal and standardized solutions being able to help in their configuration. The configuration management that responds to this concern is very important in this type of network. It consists of the definition of data models to configure and is very necessary for the good network performance. Tangible results were obtained in traditional networks with the emergence of NETCONF and YANG standards, but on the best of our humble knowledge there are none yet in WSNs. We propose in this paper wsn-routing-protocol, a YANG data model for routing protocols configuration in WSNs. Following our model, we propose two YANG configuration data models based on the latter: they are respectively aodv for AODV and rpl for RPL.
文摘Wireless sensor network has been used as a landslide monitoring tool for more than one decade. The robustness of the network is important as the systems need to survive in harsh conditions. In this paper, we consider the living time of the sensor network under the influences of the small-scale landslide. We investigate the performance of famous energy-efficient routing protocol PEGASIS in both landslide case and non-landslide case. Genetic Algorithm is also applied to enhance the effectiveness of PEGASIS. The simulation results in this paper showed that the Genetic Algorithm helps to delay the first node death if it is used at the beginning of data transmission while being used every round helps to prolong last node death slightly. The impact of the Genetic Algorithm on energy usage and route length is also examined.<span><span><span> </span></span></span><span><span><span>Under the effect of landslide, with only 70% of energy </span></span></span><span><span><span>are</span></span></span><span><span><span> spent, the simulated protocols reduced around 30% equivalent route length while managed to keep the living time up the network up to 90.76%, comparing to cases with no landslide.</span></span></span>
基金supported by National Natural Science Foundation of China (No. 60674081,No. 60834002,No. 61074145)
文摘In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.