This study focused on the structure and the platform of the road space of historic districts. We analyzed the road networks of 16 historic districts in Japan from the perspectives of circularity, accessibility and ind...This study focused on the structure and the platform of the road space of historic districts. We analyzed the road networks of 16 historic districts in Japan from the perspectives of circularity, accessibility and indirection based on graph theory. By calculatin8 and comparing the indexes of each road network (NW1 and NW2) forms, we quantitatively describe the effects of the main prefectural roads (more than 4 m in width) and narrow streets (less than 4 m in width) on the spatial characteristics. And it turned out that we could divided the 16 objective historic districts into 4 types. Moreover, we qualitatively studied the characteristics of each type of historic districts based on their development background and the structure of road network.展开更多
A high-current pulse forming network (PFN) has been developed for applications to artificial solar-wind generation. It is switched by staticinduction thyristor (SIThy) and is capable of generating pulsed current of ~...A high-current pulse forming network (PFN) has been developed for applications to artificial solar-wind generation. It is switched by staticinduction thyristor (SIThy) and is capable of generating pulsed current of ~9.7 kA for a time duration of ~1 ms. The SIThy switch module ismade that it can be controlled by an optical signal and it can be operated at elevated electrical potential. The experiments reported in this paperused two switch modules connected in series for maximum operating voltage of 3.5 kV. The experimental results have demonstrated a pulsedhigh-current generator switched by semiconductor devices, as well as the control and operation of SIThy for pulsed power application.展开更多
In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also...In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.展开更多
Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, envi...Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, environmental management, healthcare, and smart grid. Ad hoc networks have some limitations namely short operating life, unreliability, scalability, delay, high interference, and scarce resources. In order to overcome these limitations, numerous researches have been carried out. Smart antenna integration is one of them. It has been shown in the literatures that smart antenna can improve network’s capacity, increase network lifetime, reduce delay, and improve scalability by directing antenna radiation pattern in a desired direction. But, producing a desired antenna radiation pattern is not a simple task for resource constraint ad hoc networks. A careful selection of beam forming algorithm is required. In this paper we show that smart antenna system, consisting of circular microstrip antennas and arranged in a linear arrangement, is the most suitable choice for ad hoc network. We compare a number of smart antenna algorithms in this paper under different noisy conditions. We show that the Least Square Constant Modulus (LSCM) and Least Constant Modulus (LCM) algorithms outperform other algorithms in terms of directivity and minimized side lobes.展开更多
文摘This study focused on the structure and the platform of the road space of historic districts. We analyzed the road networks of 16 historic districts in Japan from the perspectives of circularity, accessibility and indirection based on graph theory. By calculatin8 and comparing the indexes of each road network (NW1 and NW2) forms, we quantitatively describe the effects of the main prefectural roads (more than 4 m in width) and narrow streets (less than 4 m in width) on the spatial characteristics. And it turned out that we could divided the 16 objective historic districts into 4 types. Moreover, we qualitatively studied the characteristics of each type of historic districts based on their development background and the structure of road network.
文摘A high-current pulse forming network (PFN) has been developed for applications to artificial solar-wind generation. It is switched by staticinduction thyristor (SIThy) and is capable of generating pulsed current of ~9.7 kA for a time duration of ~1 ms. The SIThy switch module ismade that it can be controlled by an optical signal and it can be operated at elevated electrical potential. The experiments reported in this paperused two switch modules connected in series for maximum operating voltage of 3.5 kV. The experimental results have demonstrated a pulsedhigh-current generator switched by semiconductor devices, as well as the control and operation of SIThy for pulsed power application.
基金supported by the National Natural Science Foundation of China under Grant No. 60874088 and No. 11072059the Scientific Research Fund of Yunnan Province under Grant No. 2010ZC150the Scientific Research Fund of Yunnan Provincial Education Department under Grant No. 07Y10085
文摘In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.
文摘Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, environmental management, healthcare, and smart grid. Ad hoc networks have some limitations namely short operating life, unreliability, scalability, delay, high interference, and scarce resources. In order to overcome these limitations, numerous researches have been carried out. Smart antenna integration is one of them. It has been shown in the literatures that smart antenna can improve network’s capacity, increase network lifetime, reduce delay, and improve scalability by directing antenna radiation pattern in a desired direction. But, producing a desired antenna radiation pattern is not a simple task for resource constraint ad hoc networks. A careful selection of beam forming algorithm is required. In this paper we show that smart antenna system, consisting of circular microstrip antennas and arranged in a linear arrangement, is the most suitable choice for ad hoc network. We compare a number of smart antenna algorithms in this paper under different noisy conditions. We show that the Least Square Constant Modulus (LSCM) and Least Constant Modulus (LCM) algorithms outperform other algorithms in terms of directivity and minimized side lobes.