期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
1
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
2
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 RBF neural network: identification OZONE biological activated carbon
下载PDF
An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection 被引量:1
3
作者 Hui Xu Yalin Hu +1 位作者 Weidong Cao Longjie Han 《Computers, Materials & Continua》 SCIE EI 2023年第9期3239-3255,共17页
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to... The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features. 展开更多
关键词 network traffic identification feature selection jumping spider optimization algorithm harris hawk optimization small hole imaging
下载PDF
NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS 被引量:1
4
作者 YANG Jian XU Bing YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期120-123,共4页
The noise identification model of the neural networks is established for the 63SCY14 IB hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully ca... The noise identification model of the neural networks is established for the 63SCY14 IB hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks, The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks, Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump. 展开更多
关键词 Hydraulic axial piston pump Neural networks Noise identification MATLAB
下载PDF
Study of Synthesis Identification in Cutting Process with Fuzzy Neural Network
5
作者 LIN Bin, YU Si-yuan, ZHU Hong-tao, ZHU Meng-zhou, LIN Meng-xia (The State Education Ministry Key Laboratory of High Temperature Structure Ceramics and Machining Technology of Engineering Ceramics, Tianjin University, Tianjin 300072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期40-41,共2页
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ... With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process. 展开更多
关键词 artificial neural network synthesis identification fuzzy inference on-line monitoring acoustics-vibra signal
下载PDF
Research on Traffic Identification Technologies for Peer-to-Peer Networks
6
作者 Zhou Shijie Qin Zhiguang Wu Chunjiang(School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 610054,China) 《ZTE Communications》 2007年第4期14-18,共5页
The Peer-to-Peer(P2P)network traffic identification technology includes Transport Layer Identification(TLI)and Deep Packet Inspection(DPI)methods.By analyzing packets of the transport layer and the traffic characteris... The Peer-to-Peer(P2P)network traffic identification technology includes Transport Layer Identification(TLI)and Deep Packet Inspection(DPI)methods.By analyzing packets of the transport layer and the traffic characteristic in the P2P system,TLI can identify whether or not the network data flow belongs to the P2P system.The DPI method adopts protocol analysis technology and reverting technology.It picks up data from the P2P application layer and analyzes the characteristics of the payload to judge if the network traffic belongs to P2P applications.Due to its accuracy,robustness and classifying ability,DPI is the main method used to identify P2P traffic.Adopting the advantages of TLI and DPI,a precise and efficient technology for P2P network traffic identification can be designed. 展开更多
关键词 PEER NODE Research on Traffic identification Technologies for Peer-to-Peer networks UDP TLI PAIR TCP
下载PDF
Artificial Neural Network Method Based on Expert Knowledge and Its Application to Quantitative Identification of Potential Seismic Sources
7
作者 Hu Yinlei and Zhang YumingInstitute of Geology,SSB,Beijing 100029,China 《Earthquake Research in China》 1997年第2期64-72,共9页
In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule sampl... In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized. 展开更多
关键词 Artificial Neural network Method Based on Expert Knowledge and Its Application to Quantitative identification of Potential Seismic Sources LENGTH
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部