期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
1
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 Bayesian network structure learning ant colony optimization unconstrained optimization
下载PDF
Social network learning efficiency in the principal-agent relationship
2
作者 Chuan Ding Yilin Hong +1 位作者 Yang Li Peng Liu 《Journal of Management Science and Engineering》 CSCD 2024年第2期193-219,共27页
Under the bounded rationality assumption,a principal rarely provides an optimal contract to an agent.Learning from others is one way to improve such a contract.This paper studies the efficiency of social network learn... Under the bounded rationality assumption,a principal rarely provides an optimal contract to an agent.Learning from others is one way to improve such a contract.This paper studies the efficiency of social network learning(SNL)in the principal–agent framework.We first introduce the Cobb-Douglas production function into the classic Holmstrom and Milgrom(1987)model with a constant relative risk-averse agent and work out the theoretically optimal contract.Algorithms are then designed to model the SNL process based on profit gaps between contracts in a network of principals.Considering the uncertainty of the agent's labor output,we find that the principals can reach a consensus that tends to result in overcompensation compared to the optimal contract.Then,this study examines how network attributes and model parameters impact learning efficiency and posits several summative hypotheses.The simulation results validate these hypotheses,and we discuss the relevant economic implications of the observed changes in SNL efficiency. 展开更多
关键词 SIMULATION Social network learning Principaleagent Reaching consensus learning efficiency
原文传递
Self-potential inversion based on Attention U-Net deep learning network
3
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network INVERSION landfill
下载PDF
DeepIoT.IDS:Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection 被引量:4
4
作者 Ziadoon K.Maseer Robiah Yusof +3 位作者 Salama A.Mostafa Nazrulazhar Bahaman Omar Musa Bander Ali Saleh Al-rimy 《Computers, Materials & Continua》 SCIE EI 2021年第12期3945-3966,共22页
With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of... With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points.Recently,researchers have suggested deep learning(DL)algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks.However,due to the high dynamics and imbalanced nature of the data,the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks.Therefore,it is important to design a self-adaptive model for an intrusion detection system(IDS)to improve the detection of attacks.Consequently,in this paper,a novel hybrid weighted deep belief network(HW-DBN)algorithm is proposed for building an efficient and reliable IDS(DeepIoT.IDS)model to detect existing and novel cyberattacks.The HW-DBN algorithm integrates an improved Gaussian–Bernoulli restricted Boltzmann machine(Deep GB-RBM)feature learning operator with a weighted deep neural networks(WDNN)classifier.The CICIDS2017 dataset is selected to evaluate the DeepIoT.IDS model as it contains multiple types of attacks,complex data patterns,noise values,and imbalanced classes.We have compared the performance of the DeepIoT.IDS model with three recent models.The results show the DeepIoT.IDS model outperforms the three other models by achieving a higher detection accuracy of 99.38%and 99.99%for web attack and bot attack scenarios,respectively.Furthermore,it can detect the occurrence of low-frequency attacks that are undetectable by other models. 展开更多
关键词 Cyberattacks internet of things intrusion detection system deep learning neural network supervised and unsupervised deep learning
下载PDF
Homogeneity Analysis of Multiairport System Based on Airport Attributed Network Representation Learning 被引量:1
5
作者 LIU Caihua CAI Rui +1 位作者 FENG Xia XU Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期616-624,共9页
The homogeneity analysis of multi-airport system can provide important decision-making support for the route layout and cooperative operation.Existing research seldom analyzes the homogeneity of multi-airport system f... The homogeneity analysis of multi-airport system can provide important decision-making support for the route layout and cooperative operation.Existing research seldom analyzes the homogeneity of multi-airport system from the perspective of route network analysis,and the attribute information of airport nodes in the airport route network is not appropriately integrated into the airport network.In order to solve this problem,a multi-airport system homogeneity analysis method based on airport attribute network representation learning is proposed.Firstly,the route network of a multi-airport system with attribute information is constructed.If there are flights between airports,an edge is added between airports,and regional attribute information is added for each airport node.Secondly,the airport attributes and the airport network vector are represented respectively.The airport attributes and the airport network vector are embedded into the unified airport representation vector space by the network representation learning method,and then the airport vector integrating the airport attributes and the airport network characteristics is obtained.By calculating the similarity of the airport vectors,it is convenient to calculate the degree of homogeneity between airports and the homogeneity of the multi-airport system.The experimental results on the Beijing-Tianjin-Hebei multi-airport system show that,compared with other existing algorithms,the homogeneity analysis method based on attributed network representation learning can get more consistent results with the current situation of Beijing-Tianjin-Hebei multi-airport system. 展开更多
关键词 air transportation multi-airport system homogeneity analysis network representation learning airport attribute network
下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
6
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
下载PDF
Semantic Pneumonia Segmentation and Classification for Covid-19 Using Deep Learning Network
7
作者 M.M.Lotfy Hazem M.El-Bakry +4 位作者 M.M.Elgayar Shaker El-Sappagh G.Abdallah M.I A.A.Soliman Kyung Sup Kwak 《Computers, Materials & Continua》 SCIE EI 2022年第10期1141-1158,共18页
Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stage... Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%. 展开更多
关键词 SARS-COV2 COVID-19 PNEUMONIA deep learning network semantic segmentation smart classification
下载PDF
A Fast Calculation of Metric Scores for Learning Bayesian Network
8
作者 Qiang Lv Xiao-Yan Xia Pei-De Qian 《International Journal of Automation and computing》 EI 2012年第1期37-44,共8页
Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an e... Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an example that heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN. The main contribution of our approach is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between our method and state-of-the-art solution are conducted. The results show that our method is dominantly superior to state-of-the-art solution in solving the problem of learning BN. 展开更多
关键词 Frequent counting radix-based calculation ADtree learning Bayesian network metric score
下载PDF
A NEW APPROACH FOR UNSUPERVISED RESTORING IMAGES BASED ON WAVELET-DOMAIN PROJECTION PURSUIT LEARNING NETWORK
9
作者 LinWei TianZheng WenXianbin 《Journal of Electronics(China)》 2003年第5期383-386,共4页
The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very... The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image. 展开更多
关键词 Wavelet-domain Projection pursuit learning network Wavelet shrinkage Unsu-pervised restoring image
下载PDF
A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network
10
作者 Kyungsuk Jang Gun Jin Yun 《Computers, Materials & Continua》 SCIE EI 2021年第2期1091-1120,共30页
This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c... This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively. 展开更多
关键词 Data-driven modeling deep learning neural networks genetic programming anisotropic failure criterion
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
11
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
LC-NPLA: Label and Community Information-Based Network Presentation Learning Algorithm
12
作者 Shihu Liu Chunsheng Yang Yingjie Liu 《Intelligent Automation & Soft Computing》 2023年第12期203-223,共21页
Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some l... Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms. 展开更多
关键词 Label information community information network representation learning algorithm random walk
下载PDF
Memetic algorithms-based neural network learning for basic oxygen furnace endpoint prediction
13
作者 Peng CHEN Yong-zai LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第11期841-848,共8页
Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development ... Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development of a novel memetic algorithm (MA) for neural network (NN) lcarnmg. Included in this is the integration of extremal optimization (EO) and Levenberg-Marquardt (LM) pradicnt search, and its application in BOF endpoint quality prediction. The fundamental analysis reveals that the proposed EO-LM algorithm may provide superior performance in generalization, computation efficiency, and avoid local minima, compared to traditional NN learning methods. Experimental results with production-scale BOF data show that the proposed method can effectively improve the NN model for BOF endpoint quality prediction. 展开更多
关键词 Memetic algorithm (MA) Neural network (NN) learning Back propagation (BP) Extremal optimization (EO) gevenberg-Marquardt (LM) gradient search Basic oxygen furnace (BOF)
原文传递
Robust signal recognition algorithm based on machine learning in heterogeneous networks
14
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(ELM) features-extracted Rayleigh fading channel
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
15
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions
16
作者 Zilan Zhang Yu Ao +1 位作者 Shaofan Li Grace X.Gu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期27-34,共8页
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil... Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements. 展开更多
关键词 Aerodynamic optimization Computational fluid dynamics Radial basis function Finite wing Deep learning neural network
下载PDF
Learning Rat-Like Behavior for a Small-Scale Biomimetic Robot 被引量:1
17
作者 Zihang Gao Guanglu Jia +3 位作者 Hongzhao Xie Qiang Huang Toshio Fukuda Qing Shi 《Engineering》 SCIE EI CAS 2022年第10期232-243,共12页
Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing ... Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing the behavior using a probabilistic model and movement characteristics.First,an analysis of fifteen 10 min video sequences revealed that an actual rat has six typical behaviors in the open field,and each kind of behavior contains different bio-inspired combinations of eight MPs.We used the softmax classifier to obtain the behavior-movement hierarchical probability model.Secondly,we specified the MPs using movement parameters that are static and dynamic.We obtained the predominant values of the static and dynamic movement parameters using hierarchical clustering and fuzzy C-means clustering,respectively.These predominant parameters were used for fitting the rat spinal joint trajectory using a second-order Fourier series,and the joint trajectory was generalized using a back propagation neural network with two hidden layers.Finally,the hierarchical probability model and the generalized joint trajectory were mapped to the robot as control policy and commands,respectively.We implemented the six typical behaviors on the robot,and the results show high similarity when compared with the behaviors of actual rats. 展开更多
关键词 BIOMIMETIC Bio-inspired robot Neural network learning system Behavior generation
下载PDF
Expert Recommendation in Community Question Answering via Heterogeneous Content Network Embedding 被引量:1
18
作者 Hong Li Jianjun Li +2 位作者 Guohui Li Rong Gao Lingyu Yan 《Computers, Materials & Continua》 SCIE EI 2023年第4期1687-1709,共23页
ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the hete... ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies. 展开更多
关键词 Heterogeneous network learning expert recommendation semantic representation community question answering
下载PDF
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:3
19
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network Long short term memory Recurrent neural network Gated recurrent unit
下载PDF
Semi-GSGCN: Social Robot Detection Research with Graph Neural Network 被引量:1
20
作者 Xiujuan Wang Qianqian Zheng +2 位作者 Kangfeng Zheng Yi Sui Jiayue Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第10期617-638,共22页
Malicious social robots are the disseminators of malicious information on social networks,which seriously affect information security and network environments.Efficient and reliable classification of social robots is ... Malicious social robots are the disseminators of malicious information on social networks,which seriously affect information security and network environments.Efficient and reliable classification of social robots is crucial for detecting information manipulation in social networks.Supervised classification based on manual feature extraction has been widely used in social robot detection.However,these methods not only involve the privacy of users but also ignore hidden feature information,especially the graph feature,and the label utilization rate of semi-supervised algorithms is low.Aiming at the problems of shallow feature extraction and low label utilization rate in existing social network robot detection methods,in this paper a robot detection scheme based on weighted network topology is proposed,which introduces an improved network representation learning algorithm to extract the local structure features of the network,and combined with the graph convolution network(GCN)algorithm based on the graph filter,to obtain the global structure features of the network.An end-to-end semi-supervised combination model(Semi-GSGCN)is established to detect malicious social robots.Experiments on a social network dataset(cresci-rtbust-2019)show that the proposed method has high versatility and effectiveness in detecting social robots.In addition,this method has a stronger insight into robots in social networks than other methods. 展开更多
关键词 Social networks social robot detection network representation learning graph convolution network
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部