Emotion has a nearly decisive role in behavior, which will directly affect netizens’ views on food safety public opinion events, thereby affecting the development direction of public opinion on the event, and it is o...Emotion has a nearly decisive role in behavior, which will directly affect netizens’ views on food safety public opinion events, thereby affecting the development direction of public opinion on the event, and it is of great significance for food safety network public opinion to predict emotional trends to do a good job in food safety network public opinion guidance. In this paper, the dynamic text representation method XLNet is used to generate word vectors with context-dependent dependencies to distribute the text information of food safety network public opinion. Then, the word vector is input into the CNN-BiLSTM network for local semantic feature and context semantic extraction. The attention mechanism is introduced to give different weights according to the importance of features, and the emotional tendency analysis is carried out. Based on sentiment analysis, sentiment value time series data is obtained, and a time series model is constructed to predict sentiment trends. The sentiment analysis model proposed in this paper can well classify the sentiment of food safety network public opinion, and the time series model has a good effect on the prediction of food safety network public opinion sentiment trend. .展开更多
The unique ways of information organization and dissemination was examined through the microblog and the real-name social network as the representatives of the new virtual social networks. In order to discuss the inte...The unique ways of information organization and dissemination was examined through the microblog and the real-name social network as the representatives of the new virtual social networks. In order to discuss the interrelation and interaction of the two dimensions-topic and user, a supernetwork model was established based on the supernetwork research method. Through the actual data, a supernetwork topology diagram and the changing rule of user participation were attained. And it was concluded that the key factor of dealing with emergent online public sentiment should start with affecting the opinions of key figures, whose opinions would further affect the public opinions.展开更多
文摘Emotion has a nearly decisive role in behavior, which will directly affect netizens’ views on food safety public opinion events, thereby affecting the development direction of public opinion on the event, and it is of great significance for food safety network public opinion to predict emotional trends to do a good job in food safety network public opinion guidance. In this paper, the dynamic text representation method XLNet is used to generate word vectors with context-dependent dependencies to distribute the text information of food safety network public opinion. Then, the word vector is input into the CNN-BiLSTM network for local semantic feature and context semantic extraction. The attention mechanism is introduced to give different weights according to the importance of features, and the emotional tendency analysis is carried out. Based on sentiment analysis, sentiment value time series data is obtained, and a time series model is constructed to predict sentiment trends. The sentiment analysis model proposed in this paper can well classify the sentiment of food safety network public opinion, and the time series model has a good effect on the prediction of food safety network public opinion sentiment trend. .
基金National Natural Science Foundation of China (No. 71071098)
文摘The unique ways of information organization and dissemination was examined through the microblog and the real-name social network as the representatives of the new virtual social networks. In order to discuss the interrelation and interaction of the two dimensions-topic and user, a supernetwork model was established based on the supernetwork research method. Through the actual data, a supernetwork topology diagram and the changing rule of user participation were attained. And it was concluded that the key factor of dealing with emergent online public sentiment should start with affecting the opinions of key figures, whose opinions would further affect the public opinions.