期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
1
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized BP neural network model sum of square weights
下载PDF
APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD REGULAR FUZZY NEURAL NETWORKS 被引量:2
2
作者 Liu PuyinDept. of Math., National Univ. of Defence Technology,Changsha 410073 Dept. of Math., Beijing Normal Univ.,Beijing 100875. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第1期45-57,共13页
Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At f... Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of R n . Secondly,by introducing cut preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions. 展开更多
关键词 Regular fuzzy neural networks CUT preserving fuzzy mappings universal approximators fuzzy valued Bernstein polynomials.
下载PDF
On Harmonic and Ev-Degree Molecular Topological Properties of DOX,RTOX and DSL Networks
3
作者 Murat Cancan 《Computers, Materials & Continua》 SCIE EI 2019年第6期777-786,共10页
Topological indices enable to gather information for the underlying topology of chemical structures and networks.Novel harmonic indices have been defined recently.All degree based topological indices are defined by us... Topological indices enable to gather information for the underlying topology of chemical structures and networks.Novel harmonic indices have been defined recently.All degree based topological indices are defined by using the classical degree concept.Recently two novel degree concept have been defined in graph theory:ve-degree and evdegree.Ve-degree Zagreb indices have been defined by using ve-degree concept.The prediction power of the ve-degree Zagreb indices is stronger than the classical Zagreb indices.Dominating oxide,silicate and oxygen networks are important network models in view of chemistry,physics and information science.Physical and mathematical properties of dominating oxide,silicate and oxygen networks have been considerably studied in graph theory and network theory.Topological properties of the dominating oxide,silicate and oxygen networks have been intensively investigated for the last few years period.In this study we examined,the first,the fifth harmonic and ev-degree topological indices of dominating oxide(DOX),regular triangulene oxide network(RTOX)and dominating silicate network(DSL). 展开更多
关键词 Dominating oxide network dominating silicate network ev-degree topological indices harmonic indices regular triangulene oxide network
下载PDF
Establishing quantitative structure tribo-ability relationship model using Bayesian regularization neural network 被引量:9
4
作者 Xinlei GAO Kang DAI +2 位作者 Zhan WANG Tingting WANG Junbo HE 《Friction》 CSCD 2016年第2期105-115,共11页
Quantitative structure-activity relationship methods are used to study the quantitative structure tribo-ability relationship (QSTR), which refers to the tribology capability of a compound from the calculation of struc... Quantitative structure-activity relationship methods are used to study the quantitative structure tribo-ability relationship (QSTR), which refers to the tribology capability of a compound from the calculation of structure descriptors. Here, we used the Bayesian regularization neural network (BRNN) to establish a QSTR prediction model. Two-dimensional (2D) BRNN-QSTR models can flexibly and easily estimate lubricant-additive antiwear properties. Our results show that electron transfer and heteroatoms (such as S, P, O, and N) in a lubricant-additive molecule improve the antiwear ability. We also found that molecular connectivity indices are good descriptors of 2D BRNN-QSTR models. 展开更多
关键词 quantitative structure tribo-ability relationship Bayesian regularization neural network lubricant additive ANTIWEAR
原文传递
Approximation capability of regular fuzzy neural networks to continuous fuzzy functions 被引量:2
5
作者 刘普寅 汪浩 《Science China(Technological Sciences)》 SCIE EI CAS 1999年第2期175-182,共8页
The approximation capability of regular fuzzy neural networks to fuzzy functions is studied. When σ is a nonconstant, bounded and continuous function of $\mathbb{R}$ , some equivalent conditions are obtained, with wh... The approximation capability of regular fuzzy neural networks to fuzzy functions is studied. When σ is a nonconstant, bounded and continuous function of $\mathbb{R}$ , some equivalent conditions are obtained, with which continuous fuzzy functions can be approximated to any degree of accuracy by the four-layer feedforward regular fuzzy neural networks $\sum\limits_{k = 1}^q {\tilde W_k } \cdot \left( {\sum\limits_{j = 1}^p {\tilde V_{kj} \cdot \sigma (\tilde X \cdot \tilde U_j + \tilde \Theta _j )} } \right)$ . Finally a few examples of such fuzzy functions are given. 展开更多
关键词 regular fuzzy neural networks universal approximation cut-preserving fuzzy mapping
原文传递
Bayesian Regularization Neural Networks for Prediction of Austenite Formation Temperatures(A_(c1) and A_(c3)) 被引量:1
6
作者 Masoud RAKHSHKHORSHID Sayyed-Amin TEIMOURI SENDESI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期246-251,共6页
A neural network with a feed forward topology and Bayesian regularization training algorithm is used to predict the austenite formation temperatures (At1 and A13) by considering the percentage of alloying elements i... A neural network with a feed forward topology and Bayesian regularization training algorithm is used to predict the austenite formation temperatures (At1 and A13) by considering the percentage of alloying elements in chemical composition of steel. The data base used here involves a large variety of different steel types such as struc- tural steels, stainless steels, rail steels, spring steels, high temperature creep resisting steels and tool steels. Scatter diagrams and mean relative error (MRE) statistical criteria are used to compare the performance of developed neural network with the results of Andrew% empirical equations and a feed forward neural network with "gradient descent with momentum" training algorithm. The results showed that Bayesian regularization neural network has the best performance. Also, due to the satisfactory results of the developed neural network, it was used to investigate the effect of the chemical composition on Ac1 and At3 temperatures. Results are in accordance with materials science theories. 展开更多
关键词 Bayesian regularization neural network STEEL chemical composition Ac1 Ae3
原文传递
Comparison of Synchronization Ability of Four Types of Regular Coupled Networks
7
作者 王海侠 陆启韶 石霞 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第11期681-685,共5页
We investigate the synchronization ability of four types of regular coupled networks. By introducing the proper error variables and Lyapunov functions, we turn the stability of synchronization manifold into that of nu... We investigate the synchronization ability of four types of regular coupled networks. By introducing the proper error variables and Lyapunov functions, we turn the stability of synchronization manifold into that of null solution of error equations, further, into the negative definiteness of some symmetric matrices, thus we get the sufficient synchronization stability conditions. To test the valid of the results, we take the Chua's circuit as an example. Although the theoretical synchronization thresholds appear to be very conservative, they provide new insights about the influence of topology and scale of networks on synchronization, and that the theoretical results and our numerical simulations are consistent. 展开更多
关键词 SYNCHRONIZATION regular coupled networks Lipschitz condition Lyapunov function
原文传递
Emergence of Group Cooperation in Public Goods Game on Regular Small-World Network
8
作者 ZHANG Yingqing FAN Ruguo LUO Ming 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第6期529-534,共6页
The regular small-world network, which contains the properties of small-world network and regular network, has recently received substantial attention and has been applied in researches on 2-person games. However, it ... The regular small-world network, which contains the properties of small-world network and regular network, has recently received substantial attention and has been applied in researches on 2-person games. However, it is a common phenomenon that cooperation always appears as a group behavior. In order to investigate the mechanism of group cooperation, we propose an evolutionary multi-person game model on a regular small-world network based on public goods game theory. Then, to make a comparison of frequency of cooperation among different networks, we carry out simulations on three kinds of networks with the same configuration of average degree: the square lattice, regular small-world network and random regular network. The results of simulation show that the group cooperation will emerge among these three networks when the enhancement factor r exceeds a threshold. Furthermore, time required for full cooperation on regular small-world network is slightly longer than the other networks, which indicates that the compact interactions and random interactions will promote cooperation, while the longer-range links are the obstacles in the emergence of cooperation. In addition, the cooperation would be promoted further by enhancing the random interactions on regular small-world network. 展开更多
关键词 regular small-world network public goods game group cooperation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部