期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
1
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Toward Secure Software-Defined Networks Using Machine Learning: A Review, Research Challenges, and Future Directions
2
作者 Muhammad Waqas Nadeem Hock Guan Goh +1 位作者 Yichiet Aun Vasaki Ponnusamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2201-2217,共17页
Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively ... Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions. 展开更多
关键词 Botnet attack deep learning distributed denial of service machine learning network security software-defined network
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
3
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
Game theory in network security for digital twins in industry
4
作者 Hailin Feng Dongliang Chen +1 位作者 Haibin Lv Zhihan Lv 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1068-1078,共11页
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ... To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry. 展开更多
关键词 Digital twins Industrial internet of things network security Game theory Attack and defense
下载PDF
A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions
5
作者 Monirah Al-Ajlan Mourad Ykhlef 《Computers, Materials & Continua》 SCIE EI 2024年第11期2053-2076,共24页
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener... The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps. 展开更多
关键词 Intrusion detection systems network security generative networks deep learning DATASET
下载PDF
Quality of Service and Security on Cisco Network Devices, Coupled with the Development of a Mobile Application Prototype Software for Server Room Temperature Monitoring
6
作者 Desire Mudenda Charles Smart Lubobya 《Journal of Computer and Communications》 2024年第8期123-140,共18页
In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge... In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study. 展开更多
关键词 Quality of Service (QoS) network Security Temperature Monitoring Mobile Application Cisco Devices
下载PDF
Research on College Network Information Security Protection in the Digital Economy Era
7
作者 Libin Zhang 《Proceedings of Business and Economic Studies》 2024年第2期132-137,共6页
In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the p... In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference. 展开更多
关键词 Digital economy Universities and colleges network information security Protection status COUNTERMEASURES
下载PDF
Secure Network Coding Based on Lattice Signature 被引量:2
8
作者 SHANG Tao PEI Hengli LIU Jianwei 《China Communications》 SCIE CSCD 2014年第1期138-151,共14页
To provide a high-security guaran- tee to network coding and lower the comput- ing complexity induced by signature scheme, we take full advantage of homomorphic prop- erty to build lattice signature schemes and sec- u... To provide a high-security guaran- tee to network coding and lower the comput- ing complexity induced by signature scheme, we take full advantage of homomorphic prop- erty to build lattice signature schemes and sec- ure network coding algorithms. Firstly, by means of the distance between the message and its sig- nature in a lattice, we propose a Distance-bas- ed Secure Network Coding (DSNC) algorithm and stipulate its security to a new hard problem Fixed Length Vector Problem (FLVP), which is harder than Shortest Vector Problem (SVP) on lattices. Secondly, considering the bound- ary on the distance between the message and its signature, we further propose an efficient Bo- undary-based Secure Network Coding (BSNC) algorithm to reduce the computing complexity induced by square calculation in DSNC. Sim- ulation results and security analysis show that the proposed signature schemes have stronger unforgeability due to the natural property of lattices than traditional Rivest-Shamir-Adleman (RSA)-based signature scheme. DSNC algo- rithm is more secure and BSNC algorithm greatly reduces the time cost on computation. 展开更多
关键词 secure network coding pollution attack lattice signature fixed length vector problem
下载PDF
A New Model for Network Security Situation Assessment of the Industrial Internet 被引量:1
9
作者 Ming Cheng Shiming Li +3 位作者 Yuhe Wang Guohui Zhou Peng Han Yan Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第5期2527-2555,共29页
To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First... To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet. 展开更多
关键词 Industrial internet network security situation assessment evidential reasoning belief rule base projection covariance matrix adaptive evolution strategy
下载PDF
Network Security Situation Prediction Based on TCAN-BiGRU Optimized by SSA and IQPSO 被引量:1
10
作者 Junfeng Sun Chenghai Li +2 位作者 Yafei Song Peng Ni Jian Wang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期993-1021,共29页
The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To ... The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To solve these problems,a combined prediction model based on the temporal convolution attention network(TCAN)and bi-directional gate recurrent unit(BiGRU)network is proposed,which is optimized by singular spectrum analysis(SSA)and improved quantum particle swarmoptimization algorithm(IQPSO).This model first decomposes and reconstructs network security situation data into a series of subsequences by SSA to remove the noise from the data.Furthermore,a prediction model of TCAN-BiGRU is established respectively for each subsequence.TCAN uses the TCN to extract features from the network security situation data and the improved channel attention mechanism(CAM)to extract important feature information from TCN.BiGRU learns the before-after status of situation data to extract more feature information from sequences for prediction.Besides,IQPSO is proposed to optimize the hyperparameters of BiGRU.Finally,the prediction results of the subsequence are superimposed to obtain the final predicted value.On the one hand,IQPSO compares with other optimization algorithms in the experiment,whose performance can find the optimum value of the benchmark function many times,showing that IQPSO performs better.On the other hand,the established prediction model compares with the traditional prediction methods through the simulation experiment,whose coefficient of determination is up to 0.999 on both sets,indicating that the combined prediction model established has higher prediction accuracy. 展开更多
关键词 network security situation prediction SSA IQPSO TCAN-BiGRU
下载PDF
Secure Communication Networks in the Advanced Metering Infrastructure of Smart Grid
11
作者 Feng Ye Yi Qian 《ZTE Communications》 2015年第3期13-20,共8页
In this paper, a security protocol for the advanced metering infrastructure (AMI) in smart grid is proposed. Through the AMI, customers and the service provider achieve two-way communication. Real-time monitoring an... In this paper, a security protocol for the advanced metering infrastructure (AMI) in smart grid is proposed. Through the AMI, customers and the service provider achieve two-way communication. Real-time monitoring and demand response can be applied because of the information exchanged. Since the information contains much privacy of the customer, and the control messages need to be authenticated, security needs to be ensured for the communication in the AM1. Due to the complicated network structure of the AMI, the asymmetric communications, and various security requirements, existing security protocols for other networks can hardly be applied into the AMI directly. Therefore, a security protocol specifically for the AMI to meet the security requirements is proposed. Our proposed security protocol includes initial authentication, secure uplink data aggregation, secure downlink data transmission, and domain secrets update. Compared with existing researches in related areas, our proposed security protocol takes the asymmetric communications of the AMI and various security requirements in smart grid into consideration. 展开更多
关键词 smart grid advanced metering infrastructure network security PRIVACY
下载PDF
An Efficient Construction of Secure Network Coding
12
作者 ZHANG Jing-li TANG Ping MA Song-ya 《Chinese Quarterly Journal of Mathematics》 2016年第1期60-68,共9页
Under the assumption that the wiretapper can get at most r(r < n) independent messages, Cai et al. showed that any rate n multicast code can be modified to another secure network code with transmitting rate n- r by... Under the assumption that the wiretapper can get at most r(r < n) independent messages, Cai et al. showed that any rate n multicast code can be modified to another secure network code with transmitting rate n- r by a properly chosen matrix Q^(-1). They also gave the construction for searching such an n × n nonsingular matrix Q. In this paper, we find that their method implies an efficient construction of Q. That is to say, Q can be taken as a special block lower triangular matrix with diagonal subblocks being the(n- r) ×(n- r)and r × r identity matrices, respectively. Moreover, complexity analysis is made to show the efficiency of the specific construction. 展开更多
关键词 secure network coding global encoding kernel local encoding kernel WIRETAP block lower triangular matrix
下载PDF
Research on the Construction of Computer Network Security System in Middle School Campus Network 被引量:1
13
作者 Haijing Xing 《Journal of Electronic Research and Application》 2023年第3期27-32,共6页
In order to improve the security of high school campus networks,this paper introduces the goal,system composition,and function of the network security of high school campus networks,and puts forward a series of strate... In order to improve the security of high school campus networks,this paper introduces the goal,system composition,and function of the network security of high school campus networks,and puts forward a series of strategies,including the establishment of network security protection system,data backup and recovery mechanism,and strengthening network security management and training.Through these strategies,the safety and stable operation of the campus network can be ensured,the quality of education can be improved,and school’s development can be promoted. 展开更多
关键词 network security Physical security Software security
下载PDF
Dis-NDVW: Distributed Network Asset Detection and Vulnerability Warning Platform
14
作者 Leilei Li Yansong Wang +5 位作者 Dongjie Zhu Xiaofang Li Haiwen Du Yixuan Lu Rongning Qu Russell Higgs 《Computers, Materials & Continua》 SCIE EI 2023年第7期771-791,共21页
With the rapid development of Internet technology,the issues of network asset detection and vulnerability warning have become hot topics of concern in the industry.However,most existing detection tools operate in a si... With the rapid development of Internet technology,the issues of network asset detection and vulnerability warning have become hot topics of concern in the industry.However,most existing detection tools operate in a single-node mode and cannot parallelly process large-scale tasks,which cannot meet the current needs of the industry.To address the above issues,this paper proposes a distributed network asset detection and vulnerability warning platform(Dis-NDVW)based on distributed systems and multiple detection tools.Specifically,this paper proposes a distributed message sub-scription and publication system based on Zookeeper and Kafka,which endows Dis-NDVW with the ability to parallelly process large-scale tasks.Meanwhile,Dis-NDVW combines the RangeAssignor,RoundRobinAssignor,and StickyAssignor algorithms to achieve load balancing of task nodes in a distributed detection cluster.In terms of a large-scale task processing strategy,this paper proposes a task partitioning method based on First-In-First-Out(FIFO)queue.This method realizes the parallel operation of task producers and task consumers by dividing pending tasks into different queues according to task types.To ensure the data reliability of the task cluster,Dis-NDVW provides a redundant storage strategy for master-slave partition replicas.In terms of distributed storage,Dis-NDVW utilizes a distributed elastic storage service based on ElasticSearch to achieve distributed storage and efficient retrieval of big data.Experimental verification shows that Dis-NDVW can better meet the basic requirements of ultra-large-scale detection tasks. 展开更多
关键词 Distributed network security network asset detection vulnerability warning
下载PDF
Empirical Analysis of Neural Networks-Based Models for Phishing Website Classification Using Diverse Datasets
15
作者 Shoaib Khan Bilal Khan +2 位作者 Saifullah Jan Subhan Ullah Aiman 《Journal of Cyber Security》 2023年第1期47-66,共20页
Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phis... Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning(ML)models—Artificial Neural Networks(ANN),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories.Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%.On the other hand,LSTM shows the lowest accuracy of 96%.These findings underscore the potential of ML techniques in enhancing phishing detection systems and bolstering cybersecurity measures against evolving phishing tactics,offering a promising avenue for safeguarding sensitive information and online security. 展开更多
关键词 Artificial neural networks phishing websites network security machine learning phishing datasets CLASSIFICATION
下载PDF
Design and Implementation of an Open Network Security Management Platform 被引量:2
16
作者 曹元大 王勇 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期316-320,共5页
In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasib... In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasibility and key implementing technology of the model are expatiated. A prototype system is implemented to validate it. 展开更多
关键词 network security management open platform XML RPC SNMP
下载PDF
AWeb Application Fingerprint Recognition Method Based on Machine Learning
17
作者 Yanmei Shi Wei Yu +1 位作者 Yanxia Zhao Yungang Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期887-906,共20页
Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint r... Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition. 展开更多
关键词 Web application fingerprint recognition unsupervised learning clustering algorithm feature extraction automated testing network security
下载PDF
Correlation Composition Awareness Model with Pair Collaborative Localization for IoT Authentication and Localization
18
作者 Kranthi Alluri S.Gopikrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第4期943-961,共19页
Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impa... Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy. 展开更多
关键词 Sensor localization IoT authentication network security data accuracy precise location access control security framework
下载PDF
CNN Channel Attention Intrusion Detection SystemUsing NSL-KDD Dataset
19
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第6期4319-4347,共29页
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi... Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances. 展开更多
关键词 Intrusion detection system(IDS) NSL-KDD dataset deep-learning MACHINE-LEARNING CNN channel Attention network security
下载PDF
Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection
20
作者 Amerah Alabrah 《Computers, Materials & Continua》 SCIE EI 2024年第6期3897-3912,共16页
The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’private information.Many intruders actively seek such private data either for sale... The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’private information.Many intruders actively seek such private data either for sale or other inappropriate purposes.Similarly,national and international organizations have country-level and company-level private information that could be accessed by different network attacks.Therefore,the need for a Network Intruder Detection System(NIDS)becomes essential for protecting these networks and organizations.In the evolution of NIDS,Artificial Intelligence(AI)assisted tools and methods have been widely adopted to provide effective solutions.However,the development of NIDS still faces challenges at the dataset and machine learning levels,such as large deviations in numeric features,the presence of numerous irrelevant categorical features resulting in reduced cardinality,and class imbalance in multiclass-level data.To address these challenges and offer a unified solution to NIDS development,this study proposes a novel framework that preprocesses datasets and applies a box-cox transformation to linearly transform the numeric features and bring them into closer alignment.Cardinality reduction was applied to categorical features through the binning method.Subsequently,the class imbalance dataset was addressed using the adaptive synthetic sampling data generation method.Finally,the preprocessed,refined,and oversampled feature set was divided into training and test sets with an 80–20 ratio,and two experiments were conducted.In Experiment 1,the binary classification was executed using four machine learning classifiers,with the extra trees classifier achieving the highest accuracy of 97.23%and an AUC of 0.9961.In Experiment 2,multiclass classification was performed,and the extra trees classifier emerged as the most effective,achieving an accuracy of 81.27%and an AUC of 0.97.The results were evaluated based on training,testing,and total time,and a comparative analysis with state-of-the-art studies proved the robustness and significance of the applied methods in developing a timely and precision-efficient solution to NIDS. 展开更多
关键词 Adaptive synthetic sampling class imbalance features cardinality network security over sampling
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部