期刊文献+
共找到4,179篇文章
< 1 2 209 >
每页显示 20 50 100
Age Invariant Face Recognition Using Convolutional Neural Networks and Set Distances 被引量:4
1
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2017年第3期174-185,共12页
Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and agi... Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and aging. This paper innovates as it proposes a deep learning and set-based approach to face recognition subject to aging. The images for each subject taken at various times are treated as a single set, which is then compared to sets of images belonging to other subjects. Facial features are extracted using a convolutional neural network characteristic of deep learning. Our experimental results show that set-based recognition performs better than the singleton-based approach for both face identification and face verification. We also find that by using set-based recognition, it is easier to recognize older subjects from younger ones rather than younger subjects from older ones. 展开更多
关键词 Aging biometrics Convolutional neural networks (CNN) Deep LEARNING Image Set-Based Face Recognition (ISFR) Transfer LEARNING
下载PDF
Individual Minke Whale Recognition Using Deep Learning Convolutional Neural Networks 被引量:1
2
作者 Dmitry A. Konovalov Suzanne Hillcoat +3 位作者 Genevieve Williams R. Alastair Birtles Naomi Gardiner Matthew I. Curnock 《Journal of Geoscience and Environment Protection》 2018年第5期25-36,共12页
The only known predictable aggregation of dwarf minke whales (Balaenoptera acutorostrata subsp.) occurs in the Australian offshore waters of the northern Great Barrier Reef in May-August each year. The identification ... The only known predictable aggregation of dwarf minke whales (Balaenoptera acutorostrata subsp.) occurs in the Australian offshore waters of the northern Great Barrier Reef in May-August each year. The identification of individual whales is required for research on the whales’ population characteristics and for monitoring the potential impacts of tourism activities, including commercial swims with the whales. At present, it is not cost-effective for researchers to manually process and analyze the tens of thousands of underwater images collated after each observation/tourist season, and a large data base of historical non-identified imagery exists. This study reports the first proof of concept for recognizing individual dwarf minke whales using the Deep Learning Convolutional Neural Networks (CNN).The “off-the-shelf” Image net-trained VGG16 CNN was used as the feature-encoder of the perpixel sematic segmentation Automatic Minke Whale Recognizer (AMWR). The most frequently photographed whale in a sample of 76 individual whales (MW1020) was identified in 179 images out of the total 1320 images provid-ed. Training and image augmentation procedures were developed to compen-sate for the small number of available images. The trained AMWR achieved 93% prediction accuracy on the testing subset of 36 positive/MW1020 and 228 negative/not-MW1020 images, where each negative image contained at least one of the other 75 whales. Furthermore on the test subset, AMWR achieved 74% precision, 80% recall, and 4% false-positive rate, making the presented approach comparable or better to other state-of-the-art individual animal recognition results. 展开更多
关键词 DWARF Minke WHALES PHOTO-identification POPULATION BIOLOGY Convolutional neural networks Deep Learning Image RECOGNITION
下载PDF
Feature identification in complex fluid flows by convolutional neural networks
3
作者 Shizheng Wen Michael W.Lee +2 位作者 Kai M.Kruger Bastos Ian K.Eldridge-Allegra Earl H.Dowell 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期447-454,共8页
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognit... Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers. 展开更多
关键词 Subsonic buffet flows Feature identification Convolutional neural network Long-short term memory
下载PDF
Modelling missile motion system using neural networks
4
作者 闫纪红 王子才 史小平 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第3期45-48,共4页
The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the... The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems. 展开更多
关键词 neural networks identification RECURSIVE pedictive or method nonlinear SYSTEM MODELLING MISSILE MOTION SYSTEM
下载PDF
Identification of dynamic systems using support vector regression neural networks 被引量:1
5
作者 李军 刘君华 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期228-233,共6页
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl... A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method. 展开更多
关键词 support vector regression neural network system identification robust learning algorithm ADAPTABILITY
下载PDF
Identification and Control of Dynamical Systems Using Modified Neural Networks
6
作者 任雪梅 陈杰 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期238-244,共7页
Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was empl... Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems. 展开更多
关键词 nonlinear systems neural networks adaptive control system identification
下载PDF
Face Recognition across Time Lapse Using Convolutional Neural Networks 被引量:3
7
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2016年第3期141-151,共11页
Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in genera... Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in general, and convolutional neural networks (CNN), in particular, for automatic rather than hand-crafted feature extraction for robust face recognition across time lapse. A CNN architecture using the VGG-Face deep (neural network) learning is found to produce highly discriminative and interoperable features that are robust to aging variations even across a mix of biometric datasets. The features extracted show high inter-class and low intra-class variability leading to low generalization errors on aging datasets using ensembles of subspace discriminant classifiers. The classification results for the all-encompassing authentication methods proposed on the challenging FG-NET and MORPH datasets are competitive with state-of-the-art methods including commercial face recognition engines and are richer in functionality and interoperability than existing methods as it handles mixed biometric datasets, e.g., FG-NET and MORPH. 展开更多
关键词 Aging AUTHENTICATION biometrics Convolutional neural networks (CNN) Deep Learning Ensemble Methods Face Recognition INTEROPERABILITY Security
下载PDF
IDENTIFICATION OF NONLINEAR TIME VARYING SYSTEM USING FEEDFORWARD NEURAL NETWORKS 被引量:2
8
作者 王正欧 赵长海 《Transactions of Tianjin University》 EI CAS 2000年第1期8-13,共6页
As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes... As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach. 展开更多
关键词 identification nonlinear time varying system feedforward neural network Kalman filter Q and R matrices
全文增补中
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
9
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics 被引量:2
10
作者 W.WU M.DANEKER +2 位作者 M.A.JOLLEY K.T.TURNER L.LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1039-1068,共30页
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch... Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials. 展开更多
关键词 solid mechanics material identification physics-informed neural network(PINN) data sampling boundary condition(BC)constraint
下载PDF
Nonlinear Identification and Control of Laser Welding Based on RBF Neural Networks
11
作者 Hongfei Wei Hui Zhao +1 位作者 Xinlong Shi Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期51-65,共15页
A laser beam is a heat source with a high energy density;this technol-ogy has been rapidly developed and applied in thefield of welding owing to its potential advantages,and supplements traditional welding techniques.A... A laser beam is a heat source with a high energy density;this technol-ogy has been rapidly developed and applied in thefield of welding owing to its potential advantages,and supplements traditional welding techniques.An in-depth analysis of its operating process could establish a good foundation for its application in China.It is widely understood that the welding process is a highly nonlinear and multi-variable coupling process;it comprises a significant number of complex processes with random uncertain factors.Because of their nonlinear mapping and self-learning characteristics,artificial neural networks(ANNs)have certain advantages in comparison to traditional methods in thefield of welding.Laser welding is a nonlinear dynamic process;these processes still pose a major challenge in thefield of control.Therefore,establishing a stable model is a pre-requisite for achieving accurate control.In this study,the identification and con-trol of radial basis function neural networks in laser welding processes and self-tuning PID control methods are proposed to improve weld quality.Using a MATLAB simulation,it is shown that the proposed method can obtain a good description of the level of nonlinear dynamic control,and that the algorithm iden-tification accuracy is high,practical,and effective.Using this method,the weld width quickly reaches the expected value and the system remains stable,with good robustness.Further,it ensures the stability and dynamic performance of the welding process and improves weld quality. 展开更多
关键词 Laser welding radial basis function neural networks SELF-TUNING NONLINEAR identification
下载PDF
Identification of Hammerstein Model Using Hybrid Neural Networks
12
作者 李世华 李奇 李捷 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期26-30,共5页
The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a mult... The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method. 展开更多
关键词 neural networks nonlinear systems identification Hammerstein model
下载PDF
Identification of Nonlinear Dynamic Systems Using Diagonal Recurrent Neural Networks 被引量:2
13
作者 Jing Wang Hui Chen(Information Engmeering School, University of Science and Techaology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第2期149-151,共3页
In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning m... In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning method (DBP algorithm) of theDRNN are Present6d. Nonlinear system characteriStics can be identified by presenting a set of input / output patterns tO the DRNN andadjusting its weights with the DBP algorithm. Experimental results show that the DRNN has good performances in the identification ofnonlinear dynamic systems in comparison with BP networks. 展开更多
关键词 neural network system identification intelligent control control system models learning method
下载PDF
Identification of Weather Phenomena Based on Lightweight Convolutional Neural Networks 被引量:2
14
作者 Congcong Wang Pengyu Liu +2 位作者 Kebin Jia Xiaowei Jia Yaoyao Li 《Computers, Materials & Continua》 SCIE EI 2020年第9期2043-2055,共13页
Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and... Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models. 展开更多
关键词 Deep learning convolution neural networks lightweight models weather identification
下载PDF
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks 被引量:1
15
作者 Ahmad T.Abdulsadda Kamran Iqbal 《International Journal of Automation and computing》 EI 2011年第3期333-339,共7页
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri... Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error. 展开更多
关键词 Nonlinear system identification simultaneous perturbation stochastic approximation SPSA neural networks NNs fuzzy rules multi-layer perceptron MLP.
下载PDF
Nonlinear Time-Varying Systems Identification Using Basis Sequence Expansions Combined with Neural Networks
16
作者 顾成奎 王正欧 孙雅明 《Transactions of Tianjin University》 EI CAS 2003年第1期71-74,共4页
A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning ... A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results. 展开更多
关键词 nonlinear time varying systems identification basis sequence expansions neural networks
下载PDF
Adaptive Control by Using Neural Networks
17
作者 郝继红 吕强 +1 位作者 段运波 许耀铭 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1994年第2期21-25,共5页
AdaptiveControlbyUsingNeuralNetworks¥(郝继红)(吕强)(段运波)(许耀铭)HAOJihong;LUQiang;DUANYunbo;XUYaoming(Dept.ofPowerEn... AdaptiveControlbyUsingNeuralNetworks¥(郝继红)(吕强)(段运波)(许耀铭)HAOJihong;LUQiang;DUANYunbo;XUYaoming(Dept.ofPowerEngineering,Harbini... 展开更多
关键词 ss: neural networks FUNCTIONAL APPROXIMATION adaptive control identification
下载PDF
THE MODEL VALIDATION OF DYNAMIC NEURAL NETWORKS
18
作者 李秀娟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期185-189,共5页
This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-i... This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-index(SEI)criterion for the neural network models has been developed.By using the powerful training algorithm of recursive prediction error (RPE),two simulated non-linear systems are studied,and the results show that the synthetic error-index criterion can be used to verify the dynamic neural network models.Furthermore,the proposed technique is much simple in calculation than that of the effective correlation tests.Finally,some problems required by further study are discussed. 展开更多
关键词 neural networks dynamic models non-linear systems odel validation system identification
下载PDF
DeepBio:A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics
19
作者 Anshul Mahajan Sunil K.Singla 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1623-1649,共27页
The identification of individuals through ear images is a prominent area of study in the biometric sector.Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing,prompting the... The identification of individuals through ear images is a prominent area of study in the biometric sector.Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing,prompting the exploration of supplementary biometric measures such as ear biometrics.The research proposes a Deep Learning(DL)framework,termed DeepBio,using ear biometrics for human identification.It employs two DL models and five datasets,including IIT Delhi(IITD-I and IITD-II),annotated web images(AWI),mathematical analysis of images(AMI),and EARVN1.Data augmentation techniques such as flipping,translation,and Gaussian noise are applied to enhance model performance and mitigate overfitting.Feature extraction and human identification are conducted using a hybrid approach combining Convolutional Neural Networks(CNN)and Bidirectional Long Short-Term Memory(Bi-LSTM).The DeepBio framework achieves high recognition rates of 97.97%,99.37%,98.57%,94.5%,and 96.87%on the respective datasets.Comparative analysis with existing techniques demonstrates improvements of 0.41%,0.47%,12%,and 9.75%on IITD-II,AMI,AWE,and EARVN1 datasets,respectively. 展开更多
关键词 Data augmentation convolutional neural network bidirectional long short-term memory deep learning ear biometrics
下载PDF
A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
20
作者 Jing’ang ZHU Yiheng XUE Zishun LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1685-1704,共20页
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor... Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods. 展开更多
关键词 soft material parameter identification physics-informed neural network(PINN) transfer learning inverse problem
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部