Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s dis...Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.展开更多
Huntington’s disease is a neurodegenerative disease caused by the expansion mutation of a cytosine-adenine-guanine triplet in the exon 1 of the HTT gene which is responsible for the production of the huntingtin (Htt)...Huntington’s disease is a neurodegenerative disease caused by the expansion mutation of a cytosine-adenine-guanine triplet in the exon 1 of the HTT gene which is responsible for the production of the huntingtin (Htt) protein. In physiological conditions, Htt is involved in many cellular processes such as cell signaling, transcriptional regulation, energy metabolism regulation, DNA maintenance, axonal trafficking, and antiapoptotic activity. When the genetic alteration is present, the production of a mutant version of Htt (mHtt) occurs, which is characterized by a plethora of pathogenic activities that, finally, lead to cell death. Among all the cells in which mHtt exerts its dangerous activity, the GABAergic Medium Spiny Neurons seem to be the most affected by the mHtt-induced excitotoxicity both in the cortex and in the striatum. However, as the neurodegeneration proceeds ahead the neuronal loss grows also in other brain areas such as the cerebellum, hypothalamus, thalamus, subthalamic nucleus, globus pallidus, and substantia nigra, determining the variety of symptoms that characterize Huntington’s disease. From a clinical point of view, Huntington’s disease is characterized by a wide spectrum of symptoms spanning from motor impairment to cognitive disorders and dementia. Huntington’s disease shows a prevalence of around 3.92 cases every 100,000 worldwide and an incidence of 0.48 new cases every 100,000/year. To date, there is no available cure for Huntington’s disease. Several treatments have been developed so far, aiming to reduce the severity of one or more symptoms to slow down the inexorable decline caused by the disease. In this context, the search for reliable strategies to target the different aspects of Huntington’s disease become of the utmost interest. In recent years, a variety of studies demonstrated the detrimental role of neuronal loss in Huntington’s disease condition highlighting how the replacement of lost cells would be a reasonable strategy to overcome the neurodegeneration. In this view, numerous have been the attempts in several preclinical models of Huntington’s disease to evaluate the feasibility of invasive and non-invasive approaches. Thus, the aim of this review is to offer an overview of the most appealing approaches spanning from stem cell-based cell therapy to extracellular vesicles such as exosomes in light of promoting neurogenesis, discussing the results obtained so far, their limits and the future perspectives regarding the neural regeneration in the context of Huntington’s disease.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Tooth loss has been shown to affect learning and memory in mice and increases the risk of Alz- heimer's disease. The dentate gyrus is strongly associated with cognitive function. This study hypothesized that tooth lo...Tooth loss has been shown to affect learning and memory in mice and increases the risk of Alz- heimer's disease. The dentate gyrus is strongly associated with cognitive function. This study hypothesized that tooth loss affects neurons in the dentate gyrus. Adult male mice were randomly assigned to either the tooth loss group or normal control group. In the tooth loss group, the left maxillary and mandibular molars were extracted. Normal control mice did not receive any intervention. Immunofluorescence staining revealed that the density and absorbance of double- cortinand neuronal nuclear antigen-positive cells were lower in the tooth loss group than in the normal control group. These data suggest that tooth loss may inhibit neurogenesis in the dentate gyrus of adult mice.展开更多
Herpes simplex virus-1(HSV-1)is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis(HSE)with a high mortality rate.Most patients present with changes in neuro...Herpes simplex virus-1(HSV-1)is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis(HSE)with a high mortality rate.Most patients present with changes in neurological and behavioral status,and survivors suffer long-term neurological sequelae.To date,the pathogenesis leading to brain damage is still not well understood.HSV-1 induced encephalitis in the central nervous system(CNS)in animals are usually very diffuse and progressing rapidly,and mostly fatal,making the analysis difficult.Here,we established a mouse model of HSE via intracerebral inoculation of modified version of neuralattenuated strains of HSV-1(deletion of ICP34.5 and inserting a strong promoter into the latency-associated transcript region),in which the LMR-αΔpA strain initiated moderate productive infection,leading to strong host immune and inflammatory response characterized by persistent microglia activation.This viral replication activity and prolonged inflammatory response activated signaling pathways in neuronal damage,amyloidosis,Alzheimer's disease,and neurodegeneration,eventually leading to neuronal loss and behavioral changes characterized by hypokinesia.Our study reveals detailed pathogenic processes and persistent inflammatory responses in the CNS and provides a controlled,mild and non-lethal HSE model for studying long-term neuronal injury and increased risk of neurodegenerative diseases due to HSV-1 infection.展开更多
Postmenopausal women with Alzheimer’s disease exhibit dramatically reduced sensitivity to estrogen replacement therapy,which is though to be related to an estrogen receptor(ER)α/ERβratio imbalance arising from a si...Postmenopausal women with Alzheimer’s disease exhibit dramatically reduced sensitivity to estrogen replacement therapy,which is though to be related to an estrogen receptor(ER)α/ERβratio imbalance arising from a significantly decreased level of ERs of the brain.The aim of our study was to investigate whether valproic acid(VPA)can enhance the beneficial effects of estrogen on cognitive function through restoration of ERαand ERβexpression in the brain.We removed the ovaries of female APP/PS1 mice to simulate the low estrogen levels present in postmenopausal women and then administered VPA(30 mg/kg,intraperitoneal injection,once daily),17β-estradiol(E2)(2.4μg,intraperitoneal injection,once daily),liquiritigenin(LG)(50μg/kg,intragastric infusion,once daily),VPA+E2,or VPA+LG for 4 successive weeks.Compared with treatment with a single drug,treatment with VPA+E2 or VPA+LG significantly increased the level of glycogen synthase kinase 3β,increased the expression of estrogen receptorα,reduced the expression of small ubiquitin-like modifiers,and increased the level of estrogen receptorβ.This resulted in enhanced sensitivity to estrogen therapy,reduced amyloidβaggregation,reduced abnormal phosphorylation of the tau protein,reduced neuronal loss,increased dendritic spine and postsynaptic density,and significantly alleviated memory loss and learning impairment in Alzheimer’s disease.This study was approved by the Chongqing Medical University Animal Protection and Ethics Committee,China on March 6,2013.展开更多
The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer...The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.展开更多
基金supported in parts by the National Natural Science Foundation of China,Nos.82101501(to QF),and 82201589(to XH)。
文摘Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.
文摘Huntington’s disease is a neurodegenerative disease caused by the expansion mutation of a cytosine-adenine-guanine triplet in the exon 1 of the HTT gene which is responsible for the production of the huntingtin (Htt) protein. In physiological conditions, Htt is involved in many cellular processes such as cell signaling, transcriptional regulation, energy metabolism regulation, DNA maintenance, axonal trafficking, and antiapoptotic activity. When the genetic alteration is present, the production of a mutant version of Htt (mHtt) occurs, which is characterized by a plethora of pathogenic activities that, finally, lead to cell death. Among all the cells in which mHtt exerts its dangerous activity, the GABAergic Medium Spiny Neurons seem to be the most affected by the mHtt-induced excitotoxicity both in the cortex and in the striatum. However, as the neurodegeneration proceeds ahead the neuronal loss grows also in other brain areas such as the cerebellum, hypothalamus, thalamus, subthalamic nucleus, globus pallidus, and substantia nigra, determining the variety of symptoms that characterize Huntington’s disease. From a clinical point of view, Huntington’s disease is characterized by a wide spectrum of symptoms spanning from motor impairment to cognitive disorders and dementia. Huntington’s disease shows a prevalence of around 3.92 cases every 100,000 worldwide and an incidence of 0.48 new cases every 100,000/year. To date, there is no available cure for Huntington’s disease. Several treatments have been developed so far, aiming to reduce the severity of one or more symptoms to slow down the inexorable decline caused by the disease. In this context, the search for reliable strategies to target the different aspects of Huntington’s disease become of the utmost interest. In recent years, a variety of studies demonstrated the detrimental role of neuronal loss in Huntington’s disease condition highlighting how the replacement of lost cells would be a reasonable strategy to overcome the neurodegeneration. In this view, numerous have been the attempts in several preclinical models of Huntington’s disease to evaluate the feasibility of invasive and non-invasive approaches. Thus, the aim of this review is to offer an overview of the most appealing approaches spanning from stem cell-based cell therapy to extracellular vesicles such as exosomes in light of promoting neurogenesis, discussing the results obtained so far, their limits and the future perspectives regarding the neural regeneration in the context of Huntington’s disease.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by the Science and Technology Key Project of Ministry of Education of China,No.106152the Scientific Research Project of Second Hospital of Lanzhou University of China,No.C1708
文摘Tooth loss has been shown to affect learning and memory in mice and increases the risk of Alz- heimer's disease. The dentate gyrus is strongly associated with cognitive function. This study hypothesized that tooth loss affects neurons in the dentate gyrus. Adult male mice were randomly assigned to either the tooth loss group or normal control group. In the tooth loss group, the left maxillary and mandibular molars were extracted. Normal control mice did not receive any intervention. Immunofluorescence staining revealed that the density and absorbance of double- cortinand neuronal nuclear antigen-positive cells were lower in the tooth loss group than in the normal control group. These data suggest that tooth loss may inhibit neurogenesis in the dentate gyrus of adult mice.
基金supported by grants from the National Natural Science Foundation of China-Yunnan Joint Found(NSFC,U2202215,U1602226)the National Natural Science Foundation of China(NSFC,81672040 to J.Zhou,8206306 to X.Cao,and 31802026 to L.Li)+11 种基金the Ministry of Science and Technology of China(MOST,2018YFC2000402,2018YFE0203700)the Ministry of Science and Technology of China Foreign Expert Program to J.Zhou(G2021061008L)the CAS“Light of West China”Program(xbzg-zdsys-201909)to J.Zhou,a Thousand Foreign Talent scholarship from Yunnan Province and High-end Foreign Expert Project of Yunnan Revitalization Talent Support Program to J.Zhouthe Technology Innovation Team of Kunming Medical University(CXTD201804)the International Science and Technology Cooperation Project(2017IB011)the Yunnan Training Project for Medical Talents(L-2017014)the biomedical Special Project of the Department of Science and Technology of Yunnan Province(202102AA100007-4)to X.Caothe Chinese Academy of Sciences President's International Fellowship Initiative(PIFI,2019VBA0045)to N.W.Fraserthe China Postdoctoral Science Foundation(2022MD713758)to E.Wangthe Medical reserve Talents Training Program of Yunnan Provincial Health Commission of China(H-2019059)to X.Huangthe Yunnan Fundamental Research Projects(202201AT070195)to Y.Ye.Open Research Fund HXDT-2019-1 to J.Zhou.
文摘Herpes simplex virus-1(HSV-1)is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis(HSE)with a high mortality rate.Most patients present with changes in neurological and behavioral status,and survivors suffer long-term neurological sequelae.To date,the pathogenesis leading to brain damage is still not well understood.HSV-1 induced encephalitis in the central nervous system(CNS)in animals are usually very diffuse and progressing rapidly,and mostly fatal,making the analysis difficult.Here,we established a mouse model of HSE via intracerebral inoculation of modified version of neuralattenuated strains of HSV-1(deletion of ICP34.5 and inserting a strong promoter into the latency-associated transcript region),in which the LMR-αΔpA strain initiated moderate productive infection,leading to strong host immune and inflammatory response characterized by persistent microglia activation.This viral replication activity and prolonged inflammatory response activated signaling pathways in neuronal damage,amyloidosis,Alzheimer's disease,and neurodegeneration,eventually leading to neuronal loss and behavioral changes characterized by hypokinesia.Our study reveals detailed pathogenic processes and persistent inflammatory responses in the CNS and provides a controlled,mild and non-lethal HSE model for studying long-term neuronal injury and increased risk of neurodegenerative diseases due to HSV-1 infection.
基金This study was supported by the National Natural Science Foundation of China,Nos.81671257,81371221,31600825(all to GQH).
文摘Postmenopausal women with Alzheimer’s disease exhibit dramatically reduced sensitivity to estrogen replacement therapy,which is though to be related to an estrogen receptor(ER)α/ERβratio imbalance arising from a significantly decreased level of ERs of the brain.The aim of our study was to investigate whether valproic acid(VPA)can enhance the beneficial effects of estrogen on cognitive function through restoration of ERαand ERβexpression in the brain.We removed the ovaries of female APP/PS1 mice to simulate the low estrogen levels present in postmenopausal women and then administered VPA(30 mg/kg,intraperitoneal injection,once daily),17β-estradiol(E2)(2.4μg,intraperitoneal injection,once daily),liquiritigenin(LG)(50μg/kg,intragastric infusion,once daily),VPA+E2,or VPA+LG for 4 successive weeks.Compared with treatment with a single drug,treatment with VPA+E2 or VPA+LG significantly increased the level of glycogen synthase kinase 3β,increased the expression of estrogen receptorα,reduced the expression of small ubiquitin-like modifiers,and increased the level of estrogen receptorβ.This resulted in enhanced sensitivity to estrogen therapy,reduced amyloidβaggregation,reduced abnormal phosphorylation of the tau protein,reduced neuronal loss,increased dendritic spine and postsynaptic density,and significantly alleviated memory loss and learning impairment in Alzheimer’s disease.This study was approved by the Chongqing Medical University Animal Protection and Ethics Committee,China on March 6,2013.
基金supported by the National Nature Science Foundation of China,No.81870819(to YPC)the Natural Science Foundation of Liaoning Province of China,No.2019-MS-200(to XNX).
文摘The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.