期刊文献+
共找到20,756篇文章
< 1 2 250 >
每页显示 20 50 100
How do neurons age?A focused review on the aging of the microtubular cytoskeleton 被引量:1
1
作者 Brad Richardson Thomas Goedert +2 位作者 Shmma Quraishe Katrin Deinhardt Amritpal Mudher 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1899-1907,共9页
Aging is the leading risk factor for Alzheimer’s disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to t... Aging is the leading risk factor for Alzheimer’s disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer’s disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer’s disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease. 展开更多
关键词 age-related changes AGING CYTOSKELETON MICROTUBULES neuronal morphology
下载PDF
Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury 被引量:1
2
作者 Jingzhou Liu Xin Xin +8 位作者 Jiejie Sun Yueyue Fan Xun Zhou Wei Gong Meiyan Yang Zhiping Li Yuli Wang Yang Yang Chunsheng Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期629-635,共7页
Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogr... Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue.However,previous studies have reported inconsistent results.In this study,an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects.The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes.Moreover,neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury.In summary,this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury. 展开更多
关键词 AAV9P1 ASTROCYTES astrocyte-to-neuron conversion GFAP promoter glial scar induced neurons neuronal reprogramming P1 peptide PTBP1 traumatic brain injury
下载PDF
Role of lipids in the control of autophagy and primary cilium signaling in neurons 被引量:1
3
作者 María Paz Hernández-Cáceres Daniela Pinto-Nuñez +5 位作者 Patricia Rivera Paulina Burgos Francisco Díaz-Castro Alfredo Criollo Maria Jose Yañez Eugenia Morselli 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期264-271,共8页
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso... The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration. 展开更多
关键词 autophagic flux CHOLESTEROL fatty acids GPCR lysosomal storage diseases neuronS NPC1 PHOSPHOINOSITIDES primary cilium
下载PDF
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming 被引量:1
4
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs NEUROGENESIS post-transcriptional regulation RNA binding proteins
下载PDF
Single-neuron neurodegeneration as a degenerative model for Parkinson’s disease 被引量:2
5
作者 Sandro Huenchuguala Juan Segura-Aguilar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期529-535,共7页
The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neuro... The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes. 展开更多
关键词 1-methyl-4-phenyl-1 2 3 6-tetrahydropyridine 6-HYDROXYDOPAMINE aminochrome dopaminergic neurons DT-diaphorase exogenous neurotoxins glutathione transferase M2-2
下载PDF
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
6
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFERENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Neuronal conversion from glia to replenish the lost neurons 被引量:1
7
作者 Shiyu Liang Jing Zhou +2 位作者 Xiaolin Yu Shuai Lu Ruitian Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1446-1453,共8页
Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s di... Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies. 展开更多
关键词 ASTROCYTES neural stem cells neurodegenerative diseases neuron polypyrimidine tract binding protein 1 repair REPROGRAMMING small molecule transcription factor TRANSDIFFERENTIATION
下载PDF
Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex 被引量:1
8
作者 Zongqin Xiang Shu He +13 位作者 Rongjie Chen Shanggong Liu Minhui Liu Liang Xu Jiajun Zheng Zhouquan Jiang Long Ma Ying Sun Yongpeng Qin Yi Chen Wen Li Xiangyu Wang Gong Chen Wenliang Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1781-1788,共8页
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ... Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction. 展开更多
关键词 astrocyte-to-neuron conversion Ca2+imaging direct lineage conversion GLIA ASTROCYTE in vivo reprogramming lineage-tracing mice NeuroD1 neuron two-photon imaging
下载PDF
Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury 被引量:1
9
作者 Ying Peng Zhuoxuan Li +7 位作者 Zhiyang Zhang Yinglun Chen Renyuan Wang Nixi Xu Yuanwu Cao Chang Jiang Zixian Chen Haodong Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1142-1149,共8页
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ... Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway. 展开更多
关键词 BROMOCRIPTINE central nervous system cytosolic phospholipase A2 high-content screening lipid droplet lipid metabolism LIPOTOXICITY mitogen-activated protein kinase spinal cord injury spinal cord neurons
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
10
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration neuron peripheral nerve injury sensory neurons
下载PDF
Advances in memristor based artificial neuron fabrication-materials,models,and applications
11
作者 Jingyao Bian Zhiyong Liu +5 位作者 Ye Tao Zhongqiang Wang Xiaoning Zhao Ya Lin Haiyang Xu Yichun Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期27-50,共24页
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l... Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected. 展开更多
关键词 artificial neuron MEMRISTOR memristive materials neuron model micro-nano manufacturing spiking neural network
下载PDF
In vivo imaging of the neuronal response to spinal cord injury:a narrative review
12
作者 Junhao Deng Chang Sun +5 位作者 Ying Zheng Jianpeng Gao Xiang Cui Yu Wang Licheng Zhang Peifu Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期811-817,共7页
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ... Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging. 展开更多
关键词 anterior horn neurons calcium imaging central nervous system dorsal horn neurons dorsal root ganglion in vivo imaging neuronal response spinal cord injury spinal cord two-photon microscopy
下载PDF
Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion
13
作者 Lu Guan Mengting Qiu +10 位作者 Na Li Zhengxiang Zhou Ru Ye Liyan Zhong Yashuang Xu Junhui Ren Yi Liang Xiaomei Shao Jianqiao Fang Junfan Fang Junying Du 《Neural Regeneration Research》 SCIE CAS 2025年第10期2838-2854,共17页
Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairme... Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development. 展开更多
关键词 anterior cingulate cortex ANXIETY chronic pain circuit communication COMORBIDITY depression gamma-aminobutyric acidergic neurons parvalbumin neurons synaptic transmission
下载PDF
Many faces of neuronal activity manipulation in Drosophila
14
作者 Amber Krebs Steffen Kautzmann Christian Klämbt 《Neural Regeneration Research》 SCIE CAS 2025年第9期2574-2576,共3页
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron... Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time. 展开更多
关键词 MANIPULATION potential. neuronAL
下载PDF
Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
15
作者 鲁婕妤 谢小华 +3 位作者 卢亚平 吴亚联 李春来 马铭磷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期729-734,共6页
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating... The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience. 展开更多
关键词 small-world networks Rulkov neurons MEMRISTOR SYNCHRONIZATION
下载PDF
Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high–low frequency signal
16
作者 Charles Omotomide Apata 唐浥瑞 +2 位作者 周祎凡 蒋龙 裴启明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期722-735,共14页
The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing ... The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients. 展开更多
关键词 piezoelectric ceramic Josephson junction auditory neuron SYNCHRONIZATION
下载PDF
Electroacupuncture Alleviates Memory Deficits in APP/PS1 Mice by Targeting Serotonergic Neurons in Dorsal Raphe Nucleus
17
作者 Chao-chao YU Xiao-fei WANG +8 位作者 Jia WANG Chu LI Juan XIAO Xue-song WANG Rui HAN Shu-qin WANG Yuan-fang LIN Li-hong KONG Yan-jun DU 《Current Medical Science》 SCIE CAS 2024年第5期987-1000,共14页
Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impair... Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impairment in individuals with AD.However,the underlying mechanisms remains poorly understood.This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD.Methods APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu(BL 23)and Baihui(GV 20).Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus(DRN).Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests.Golgi staining,western blot,and immunostaining were utilized to determine EA-induced neuroprotection.Results EA at Shenshu(BL 23)and Baihui(GV 20)effectively ameliorated learning and memory impairments in APP/PS1 mice.EA attenuated dendritic spine loss,increased the expression levels of PSD95,synaptophysin,and brain-derived neurotrophic factor in hippocampus.Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B.Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory.Conclusion EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN.Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD. 展开更多
关键词 Alzheimer’s disease ELECTROACUPUNCTURE dorsal raphe nucleus HIPPOCAMPUS serotonergic neurons glutamatergic neurons 5-HT1B cognitive impairment chemogenetic manipulation synaptic plasticity
下载PDF
Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
18
作者 丁大为 牛炎 +4 位作者 张红伟 杨宗立 王金 王威 王谋媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期306-314,共9页
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates... This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping. 展开更多
关键词 fractional order MEMRISTORS Rulkov neuron medical image watermarking
下载PDF
Exercise-induced adaptation of neurons in the vertebrate locomotor system
19
作者 Yue Dai Yi Cheng +2 位作者 Renkai Ge Ke Chen Liming Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期160-171,共12页
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise... Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise. 展开更多
关键词 Dendritic plasticity EXCITABILITY Exercise Ion channel modulation neuron adaptation
下载PDF
Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
20
作者 晏询 李志军 李春来 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期537-544,共8页
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero... Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength. 展开更多
关键词 heterogeneous neuron network discrete memristor coexisting attractors SYNCHRONIZATION noise
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部