期刊文献+
共找到99,766篇文章
< 1 2 250 >
每页显示 20 50 100
Zuogui Jiangtang Jieyu Formula ameliorating hippocampal neuronal apoptosis in diabetic rats with depression by inhibiting JNK signaling pathway
1
作者 ZHAO Hongqing MOU Qingrui +3 位作者 JIANG Jiaqi ZHU Xuan LIU Zhuo WANG Yuhong 《Digital Chinese Medicine》 CAS CSCD 2024年第2期195-208,共14页
Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation... Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed. 展开更多
关键词 Zuogui Jiangtang Jieyu Formula(左归降糖解郁方 ZJJF) DEPRESSION Diabetes mellitus neuronal apoptosis JNK signaling pathway
下载PDF
Possible Role of Cellular Polyamine Metabolism in Neuronal Apoptosis
2
作者 Xin-tong JI Wen-lei YU +3 位作者 Meng-jia JIN Lin-jie LU Hong-ping YIN Huan-huan WANG 《Current Medical Science》 SCIE CAS 2024年第2期281-290,共10页
Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of ... Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future. 展开更多
关键词 POLYAMINE apoptosis MITOCHONDRIA neurodegenerative disease
下载PDF
Many faces of neuronal activity manipulation in Drosophila
3
作者 Amber Krebs Steffen Kautzmann Christian Klämbt 《Neural Regeneration Research》 SCIE CAS 2025年第9期2574-2576,共3页
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron... Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time. 展开更多
关键词 MANIPULATION potential. neuronal
下载PDF
Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching
4
作者 Jangampalli Adi Pradeepkiran Priyanka Rawat +2 位作者 Arubala P.Reddy Erika Orlov PHemachandra Reddy 《Neural Regeneration Research》 SCIE CAS 2025年第9期2624-2632,共9页
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are... The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition. 展开更多
关键词 diethyl(3 4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ) hippocampal neuronal cells HT22 neurite outgrowth neuronal development small molecule
下载PDF
NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation
5
作者 Zhihao Lin Changzhou Ying +6 位作者 Xiaoli Si Naijia Xue Yi Liu Ran Zheng Ying Chen Jiali Pu Baorong Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2038-2052,共15页
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati... Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease. 展开更多
关键词 dopaminergic neuron ferroptosis NADPH oxidase 4(NOX4) NEUROINFLAMMATION Parkinson's disease
下载PDF
Neuronal regulated cell death in aging-related neurodegenerative diseases:key pathways and therapeutic potentials
6
作者 Run Song Shiyi Yin +1 位作者 Jiannan Wu Junqiang Yan 《Neural Regeneration Research》 SCIE CAS 2025年第8期2245-2263,共19页
Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulat... Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulatory mechanism for regulating neuronal aging and death.However,excessive activation of regulated cell death may lead to the progression of aging-related diseases.This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases.Notably,the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases.These forms of cell death exacerbate disease progression by promoting inflammation,oxidative stress,and pathological protein aggregation.The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms,with a focus on ferroptosis,cuproptosis,and disulfidptosis.For instance,FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation,while copper mediates glutathione peroxidase 4 degradation,enhancing ferroptosis sensitivity.Additionally,inhibiting the Xc-transport system to prevent ferroptosis can increase disulfide formation and shift the NADP^(+)/NADPH ratio,transitioning ferroptosis to disulfidptosis.These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms.In conclusion,identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions. 展开更多
关键词 apoptosis autophagy cuproptosis disulfidptosis ferroptosis NECROPTOSIS neurodegenerative disease neurological aging diseases PANoptosis PYROPTOSIS
下载PDF
FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression
7
作者 Jing Yao Yuan Li +5 位作者 Xi Liu Wenping Liang Yu Li Liyong Wu Zhe Wang Weihong Song 《Neural Regeneration Research》 SCIE CAS 2025年第7期2068-2083,共16页
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle... Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression. 展开更多
关键词 5′end trimming Alzheimer's disease AMYLOID-BETA amyloid-β-dependent transcription FUBP3 INFLAMMASOME inflammation neuron NLRP3 tau transcription factor
下载PDF
AAV2-PDE6B restores retinal structure and function in the retinal degeneration 10 mouse model of retinitis pigmentosa by promoting phototransduction and inhibiting apoptosis
8
作者 Ruiqi Qiu Mingzhu Yang +5 位作者 Xiuxiu Jin Jingyang Liu Weiping Wang Xiaoli Zhang Jinfeng Han Bo Lei 《Neural Regeneration Research》 SCIE CAS 2025年第8期2408-2419,共12页
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso... Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa. 展开更多
关键词 apoptosis AAV2-PDE6B ERK1/2 gene therapy PHOTOTRANSDUCTION PROTEOMICS rd10 retinitis pigmentosa
下载PDF
Pinacidil reduces neuronal apoptosis following cerebral ischemia-reperfusion in rats through both mitochondrial and death-receptor signal pathways 被引量:6
9
作者 张鸿 宋利春 +2 位作者 刘艳艳 马英 吕永利 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第3期145-150,共6页
Objective To investigate effect of pinacidil, an ATP sensitive potassium channel (KATP) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rat... Objective To investigate effect of pinacidil, an ATP sensitive potassium channel (KATP) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rats. Methods One hundred male Wistar rats were randomly divided into four groups: A, sham-operated group; B, ischemia-reperfusion group; C, KATe opener treatment group; and D, KATe opener and blocker treatment group. The middle cerebral artery occlusion (MCAO) model was established by using the intraluminal suture occlusion method, neuronal apoptosis was determined by TUNEL staining, and expressions of caspase-8, caspase-9 and caspase-3 mRNA were detected by in situ hybridization. Results (1) The numbers of apoptotic neurons at 12 h, 24 h, 48 h, and 72 h were significantly less in group C than in groups B and D (P 〈 0.01 or P 〈 0.05); and there was no difference between groups B and D at all time points (P 〉 0.05). (2) The expressions of caspase-3 mRNA and caspase-8 mRNA at all times and the expressions of caspase-9 mRNA at 12 h, 24 h, 48 h, 72 h were significantly lower in group C than in groups B and D (P 〈 0.01 or P 〈 0.05); and there were no differences between groups B and D at all time points (P 〉 0.05). Conclusions KATP opener can significantly decrease the neuronal apoptosis and the expressions of caspase-3, caspase-8 and caspase-9 mRNAs following cerebral ischemiareperfusion. The neuronal apoptosis may be decreased by the inhibition of both mitochondrial and death-receptor signal pathways. 展开更多
关键词 PINACIDIL GLIPIZIDE cerebral ischemia apoptosis mitochondria death-receptors signal pathway caspase-3 CASPASE-8 caspase-9
下载PDF
EFFECT OF ACUPUNCTURE ON NEURONAL APOPTOSIS AFTER FOCAL CEREBRAL ISCHEMIC REPERFUSION INJURY IN RATS 被引量:2
10
作者 甘云波 黄光英 张明敏 《World Journal of Acupuncture-Moxibustion》 2007年第3期13-16,65,共5页
Objective To observe the impacts of acupuncture on cell-cycl ODK4) and neuronal death in hippocampal neurons in rats with focal cerebra e-related factors (cyclin D1, schemic reperfusion injury Methods Middle cerebra... Objective To observe the impacts of acupuncture on cell-cycl ODK4) and neuronal death in hippocampal neurons in rats with focal cerebra e-related factors (cyclin D1, schemic reperfusion injury Methods Middle cerebral artery occlusion (MCAO) was used to establish the model of cerebral ischemic reperfusion injury. Western blot (WB) and flow cytometry (FCM) were applied to the tests of cell-cycle-related factors and apoptosis respectively. Results In 48 h of reperfusion, the expressions of cell-cycle-related factors (cyclin D1, CDK4) in hippocampal neurons and apoptosis were increased. In acupuncture group, the expressions of cyclin DI and CDK4 and apoptosis were reduced remarkably (P 〈 0.01 ). Conclusion Acupuncture plays the protective role in cerebral ischemic reperfusion injury, which is contributed probably to the modulation of cell-cycle-related factors to inhibit apoptosis. 展开更多
关键词 Acupuncture Cerebral ischemic reperfusion Cell-cycle-related factors apoptosis
下载PDF
Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice 被引量:7
11
作者 Qiu-Yuan Gong Lin Cai +4 位作者 Yao Jing Wei Wang Dian-Xu Yang Shi-Wen Chen Heng-Li Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期2007-2013,共7页
Urolithin A(UA)is a natural metabolite produced from polyphenolics in foods such as pomegranates,berries,and nuts.UA is neuroprotective against Parkinson’s disease,Alzheimer’s disease,and cerebral hemorrhage.However... Urolithin A(UA)is a natural metabolite produced from polyphenolics in foods such as pomegranates,berries,and nuts.UA is neuroprotective against Parkinson’s disease,Alzheimer’s disease,and cerebral hemorrhage.However,its effect against traumatic brain injury remains unknown.In this study,we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA.We found that UA greatly reduced brain edema;increased the expression of tight junction proteins in injured cortex;increased the immunopositivity of two neuronal autophagy markers,microtubule-associated protein 1A/B light chain 3A/B(LC3)and p62;downregulated protein kinase B(Akt)and mammalian target of rapamycin(mTOR),two regulators of the phosphatidylinositol 3-kinase(PI3K)/Akt/mTOR signaling pathway;decreased the phosphorylation levels of inhibitor of NFκB(IκB)kinase alpha(IKKα)and nuclear factor kappa B(NFκB),two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway;reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex;and improved mouse neurological function.These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury,and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways,thus reducing neuroinflammation and enhancing autophagy. 展开更多
关键词 AUTOPHAGY blood-brain barrier cerebral edema controlled cortical impact model neuronal apoptosis NEUROPHARMACOLOGY NEUROPROTECTION tight junction protein traumatic brain injury urolithin A
下载PDF
The mechanism and relevant mediators associated with neuronal apoptosis and potential therapeutic targets in subarachnoid hemorrhage 被引量:6
12
作者 Qi Tian Sheng Liu +6 位作者 Shou-Meng Han Wei Zhang Xian-Yao Qin Jun-Hui Chen Cheng-Li Liu Yu-Jia Guo Ming-Chang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期244-252,共9页
Subarachnoid hemorrhage(SAH)is a dominant cause of death and disability wo rldwide.A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neuro... Subarachnoid hemorrhage(SAH)is a dominant cause of death and disability wo rldwide.A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neuro ns,which subsequently promotes a series of pathophysiological responses leading to neuronal death.Many previous experimental studies have reported that excitotoxicity,mitochondrial death pathways,the release of free radicals,protein misfolding,apoptosis,nec rosis,autophagy,and inflammation are involved solely or in combination in this disorder.Among them,irreversible neuronal apoptosis plays a key role in both short-and long-term prognoses after SAH.Neuronal apoptosis occurs through multiple pathways including extrinsic,mitochondrial,endoplasmic reticulum,p53 and oxidative stress.Meanwhile,a large number of blood contents enter the subarachnoid space after SAH,and the secondary metabolites,including oxygenated hemoglo bin and heme,further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema,causing early brain injury and delayed cerebral ischemia,and ultimately increasing neuronal apoptosis.Even there is no clear and effective therapeutic strategy for SAH thus far,but by understanding apoptosis,we might excavate new ideas and approaches,as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH.In this review,we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH,which provides a possible target or new strategy for the treatment of SAH. 展开更多
关键词 blood-brain barrier MECHANISM MEDIATORS neuronal apoptosis PATHWAYS subarachnoid hemorrhage TARGETS treatment
下载PDF
Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury 被引量:10
13
作者 Jun-Jie Zhao Zun-Wei Liu +4 位作者 Bo Wang Ting-Qin Huang Dan Guo Yong-Lin Zhao Jin-Ning Song 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期667-675,共9页
Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke,but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported.A rat model of traumat... Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke,but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported.A rat model of traumatic brain injury was established by weight-drop method.The tissue plasminogen activator inhibitor neuroserpin(5μL,0.25 mg/mL)was injected into the lateral ventricle.Neurological function was assessed by neurological severity score.Neuronal and axonal injuries were assessed by hematoxylin-eosin staining and Bielschowsky silver staining.Protein level of endogenous tissue plasminogen activator was analyzed by western blot assay.Apoptotic marker cleaved caspase-3,neuronal marker neurofilament light chain,astrocyte marker glial fibrillary acidic protein and microglial marker Iba-1 were analyzed by immunohistochemical staining.Apoptotic cell types were detected by immunofluorescence double labeling.Apoptotic cells in the damaged cortex were detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling staining.Degenerating neurons in the damaged cortex were detected by Fluoro-Jade B staining.Expression of tissue plasminogen activator was increased at 6 hours,and peaked at 3 days after traumatic brain injury.Neuronal apoptosis and axonal injury were detected after traumatic brain injury.Moreover,neuroserpin enhanced neuronal apoptosis,neuronal injury and axonal injury,and activated microglia and astrocytes.Neuroserpin further deteriorated neurobehavioral function in rats with traumatic brain injury.Our findings confirm that inhibition of endogenous tissue plasminogen activator aggravates neuronal apoptosis and axonal injury after traumatic brain injury,and activates microglia and astrocytes.This study was approved by the Biomedical Ethics Committee of Animal Experiments of Shaanxi Province of China in June 2015. 展开更多
关键词 apoptosis ASTROCYTES AXONAL INJURY inflammation microglia nerve REGENERATION neural REGENERATION neuronal INJURY neurons NEUROSERPIN tissue PLASMINOGEN activator traumatic brain INJURY
下载PDF
GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury 被引量:17
14
作者 Zi-Wei Han Yue-Chen Chang +5 位作者 Ying Zhou Hang Zhang Long Chen Yang Zhang Jun-Qiang Si Li Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第7期1221-1229,共9页
Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum st... Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum stress pathway(glucose-regulated protein 78,caspase-12,and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor.Female Sprague-Dawley rats received ovariectomy(OVX),and then cerebral I/R rat models(OVX+ I/R) were established by middle cerebral artery occlusion.Immediately after I/R,rat models were injected with 100 μg/kg E2(OVX + I/R +E2),or 100 μg/kg G protein-coupled estrogen receptor agonist G1(OVX + I/R + G1) in the lateral ventricle.Longa scoring was used to detect neurobehavioral changes in each group.Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining.Morphological changes in neurons were observed by Nissl staining.Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group,neurological function was remarkably improved,infarct volume was reduced,number of normal Nissl bodies was dramatically increased,and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention.To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum,caspase-12 distribution and expression were detected by immunofluorescence,and mRNA and protein levels of glucose-regulated protein 78,caspase-12,and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay.The results showed that compared with the OVX+ I/R group,E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78,C/EBP homologous protein,and caspase-12.However,the G protein-coupled estrogen receptor antagonist G15(OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury.These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus,thereby improving dysfunction caused by cerebral I/R injury.Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine,China(approval No.SHZ A2017-171) on February 27,2017. 展开更多
关键词 nerve REGENERATION cerebral ischemia/reperfusion injury ESTROGEN G protein-coupled ESTROGEN receptor G1 G15 endoplasmic reticulum stress glucose-regulated PROTEIN 78 caspase-12 C/EBP homologous PROTEIN neuronal apoptosis neural REGENERATION
下载PDF
Bcl-2 in suppressing neuronal apoptosis after spinal cord injury 被引量:6
15
作者 Ying Wang Zhi-yang Sun +2 位作者 Kui-ming Zhang Guo-qiang Xu Guang Li 《World Journal of Emergency Medicine》 CAS 2011年第1期38-44,共7页
BACKGROUND: Apoptosis plays an important role in central neural diseases and trauma. B-cell lymphoma/Leukemia-2 (Bcl-2) can inhibit apoptosis in a wide variety of cells including neurons. In this experiment, by stu... BACKGROUND: Apoptosis plays an important role in central neural diseases and trauma. B-cell lymphoma/Leukemia-2 (Bcl-2) can inhibit apoptosis in a wide variety of cells including neurons. In this experiment, by studying Bcl-2 over-expression transgenic (TG) mice subjected to spinal cord injury (SCI), we investigated whether Bcl-2 could reduce posttraumatic neuronal apoptosis, reduce the range of damage, and improve the behavioral functional recovery after contusive SCI.METHODS: Nine Bcl-2 TG mice and nine control mice were subjected to SCI of moderate severity at T10, with the use of weight dropping (WD) method (impact force 2.5×3.0 g/cm). At times up to 1 day, 7 days and 14 days after SCI, functional defi cits were evaluated with Basso, Beattie, and Bresnahan (BBB) scales, and apoptosis of neurons was investigated by using the TUNEL method. Another three control mice only underwent lamina opening, but were not subjected to SCI, to provide blank comparison.RESULTS: The mean functional scores for the control mice (5.05 ±0.35) were lower than those for the Bcl-2 TG mice (5.45 ±0.15), although the unpaired T-test revealed no signifi cant difference (P=0.67). On the other hand, the number of TUNEL positive neurons and integrated option density (IOD) scores for the Bcl-2 TG mice were both signifi cantly lower than those for the control mice (P〈0.05).CONCLUSIONS: This experiment suggests that overexpression of Bcl-2 may suppress neuronal apoptosis after SCI. Bcl-2 may be an important factor within the central nervous system that can relieve the damage after trauma. 展开更多
关键词 Spinal cord injury BCL-2 apoptosis of neurons Weight dropping Transgenic mouse
下载PDF
Inhibitory effect of acupuncture on neuronalapoptosis in rats after cerebral ischemia 被引量:3
16
作者 Bangyu Ju Jing Zhang Guohua Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第4期230-233,共4页
BACKGROUND: Delayed neuronal death after total cerebral ischemia may accompany with apoptosis, but acupuncture may play a certain role in protecting nerve through inhibiting ischemic neuronal apoptosis. OBJECTIVE: T... BACKGROUND: Delayed neuronal death after total cerebral ischemia may accompany with apoptosis, but acupuncture may play a certain role in protecting nerve through inhibiting ischemic neuronal apoptosis. OBJECTIVE: To observe the effect of acupuncture on neuronal apoptosis in rats after cerebral ischemia and analyze its cerebral protective mechanism. DESIGN: Contrast observation among groups. SETTING: Heilongjiang University of Traditional Chinese Medicine. MATERIALS: A total of 30 male healthy Wistar rats of general grade and weighing (250±20) g were randomly divided into three groups, including sham operation group, cerebral ischemia group and acupuncture group with 10 rats in each group. Apoptosis in situ kit was provided by Baolingman Company, Germany. METHODS: The experiment was carried out in the Laboratory Center, Heilongjiang University of Traditional Chinese Medicine from May to November 2004. ① Rats in the cerebral ischemia group and the acupuncture group were used to establish total cerebral ischemic models with four vessels occlusion; in addition, models in the sham operation group were established with the same method as mentioned above. However, four vessels of rats in the sham operation were exposured and cerebral ischemia did not occur. Rats in the acupuncture group were given acupuncture treatment after operation. Needle of 40 mm in length was used to acupuncture bilateral Zusanli (St 36) and Quchi (LI 11) with the depth of 3 mm, and then bilateral acupoints were connected with KWD-808Ⅱ omnipotenc impulse electro-therapeutic apparatus (frequency: 1 Hz; thin waves; voltage: 2 V) once a day for totally 30 minutes. Meanwhile, needle of 25 mm in length was used to acupuncture Baihui (Du 20) with the depth of 3 mm, and then the needle was twirled once every 5 minutes for 30 minutes in total. The course was 7 days. ② Neuronal injuries in hippocampal CAI area after cerebral ischemia were observed with Nissl body staining method at 7 days after treatment; neuronal apoptosis was observed with TUNEL staining; manifestations of neuronal apoptosis in cerebral cortex and hippocampal CAI area were observed with electron microscope. MAIN OUTCOME MEASURES: Neuronal injuries in hippocampal CAI area after cerebral ischemia; neuronal apoptosis in cerebral cortex and hippocampal CAI area after cerebral ischemia; morphological changes under electron microscope. RESULTS: Among 30 Wistar rats, 24 rats were involved in the final analysis. ① Expression of positive neurons in cerebral cortex and hippocampal CAI area with Nissl body staining: Neuronal defect was obvious in cerebral cortex and hippocampal CAI area in the cerebral ischemia group as compared with that in the sham operation group (P 〈 0.05), and neuronal defect was decreased in hippocampal CAI area in the cerebral ischemia group as compared with that in the acupuncture group (P 〈 0.05). ② Expression of positive neurons in cerebral cortex and hippocampal CAI area with TUNEL staining: Positive neurons with TUNEL staining were not observed in the sham operation group, but positive neurons were increased in the cerebral ischemia group as compared with those in the acupuncture group (P 〈0.05). ③ Observational results of electron microscope: Neuronal apoptosis was not found in the sham operation group; neuronal apoptosis was rarely found in the acupuncture group; neuronal apoptosis was typical in the cerebral ischemia group. CONCLUSION: Delayed neuronal death after total cerebral ischemia may accompany with apoptosis, but acupuncture may play a certain role in protecting nerve through inhibiting ischemic neuronal apoptosis. 展开更多
关键词 brain ischemia ACUPUNCTURE rats Wistar NEURONS apoptosis
下载PDF
Treadmill training improves neurological deficits and suppresses neuronal apoptosis in cerebral ischemic stroke rats 被引量:4
17
作者 Li-Mei Cao Zhi-Qiang Dong +1 位作者 Qiang Li Xu Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1387-1393,共7页
RehabilNation training is believed to be beneficial to patients with stroke, but its molecular mechanism is still unclear. Rat models of cerebral ischemic stroke were established by middle cerebral artery occlusion/re... RehabilNation training is believed to be beneficial to patients with stroke, but its molecular mechanism is still unclear. Rat models of cerebral ischemic stroke were established by middle cerebral artery occlusion/reperfusion, and then received treadmill training of different intens让ies, twice a day for 30 minutes for 1 week. Low-intensity training was conducted at 5 m/min, with a 10-minute running, 10-minute rest, and 10-minute running cycle. In the moderate-intensity training, the intensity gradually increased from 5 m/min to 10 m/min in 5 minutes, with the same rest cycle as above. In high-intensity training, the intensity gradually increased from 5 m/min to 25 m/min in 5 minutes, with the same rest cycle as above. The Bederson scale was used to evaluate the improvement of motor function. Infarct volume was detected using 2,3,5-triphenyltetrazolium chloride staining. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining was applied to detect the apoptosis of nerve cells in brain tissue. Western blot assay was employed to analyze the activation of cyclic adenosine monophosphate (cAMP)/protein kinase A and Akt/glycogen synthase kinase-3卩 signaling pathways in rat brain tissue. All training intensities reduced the neurological deficit score, infarct volume, and apoptosis in nerve cells in brain tissue of stroke rats. Training intensities activated the cAMP/protein kinase A and Akt/glycogen synthase kinase-3 beta signaling pathways. This activation was more obvious with higher training intensities. These changes were reversed by intracerebroventricular injection of protein kinase A inhibitor Rp-cAMP. Our findings indicate that the neuroprotective effect of rehabilitation training is achieved via activation of the cAMP/ protein kinase A and Akt/glycogen synthase kinase-3 beta signaling pathways. This study was approved by the Ethics Committee of Animal Experimentation in Shanghai No. 8 Peoples Hospital, China. 展开更多
关键词 nerve REGENERATION ischemic stroke TREADMILL training neuronal DEFICIT apoptosis cyclic adenosine MONOPHOSPHATE protein kinase A GLYCOGEN synthase kinase-3^ NEUROPROTECTIVE effect neural REGENERATION
下载PDF
Extracts of Bauhinia Championii Alleviate Acute Neuronal Injury After Ischemic Reperfusion by Improving Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis 被引量:1
18
作者 Mei HUANG Zi-xi LI +2 位作者 Juan CHEN Ling CHEN Yuan-yuan LI 《Current Medical Science》 SCIE CAS 2022年第3期483-490,共8页
Objective Cerebral ischemia/reperfusion(I/R)is a potential factor for lethal injury,and currently lacks effective remedies.Bauhinia championii extracts(BCEs)have been reported to exhibit anti-oxidative and anti-hypoxi... Objective Cerebral ischemia/reperfusion(I/R)is a potential factor for lethal injury,and currently lacks effective remedies.Bauhinia championii extracts(BCEs)have been reported to exhibit anti-oxidative and anti-hypoxia properties.The current work aimed to study whether BCE could alleviate neuronal injury caused by I/R.Methods To investigate the protective effects of BCE,oxygen-glucose deprivation/reperfusion(OGD/R)was applied to the HT22 cell line in vitro and to a cerebral I/R mouse model in vivo.Results Under OGD/R,the survival of HT22 cells was significantly prolonged after treatment with BCE.In vivo,BCE significantly reduced the infarct area and decreased neuronal apoptosis caused by I/R.It was further found that OGD/R could trigger endoplasmic reticulum(ER)stress and induce ER stress-mediated neuronal apoptosis in vivo and in vitro,while BCE could effectively alleviate ER stress and neuronal apoptosis.Conclusion These results suggested that BCE exhibits neuroprotective effects by reducing ER stress-mediated apoptosis after cerebral I/R injury.BCE may therefore be an effective therapeutic regimen against cerebral I/R damage. 展开更多
关键词 Bauhinia championii extraction ischemia/reperfusion injury endoplasmic reticulum stress neuron apoptosis
下载PDF
Relevance and therapeutic potential of Cyp A targeting to block apoptosis inducing factor-mediated neuronal cell death 被引量:2
19
作者 Nunzianna Doti Menotti Ruvo 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1428-1429,共2页
Programmed cell death (PCD) signaling pathways are import- ant contributors to acute neurological insults such as hypox- ic-ischemic brain damage, traumatic brain injury, stroke etc. The pathogenesis of all these di... Programmed cell death (PCD) signaling pathways are import- ant contributors to acute neurological insults such as hypox- ic-ischemic brain damage, traumatic brain injury, stroke etc. The pathogenesis of all these diseases is closely linked with ab- erration of apoptotic cell death pathways. Mitochondria play a crucial role during PCD, acting as both sensors of death signals, and as initiators of biochemical path- ways, which cause cell death (Bras et al., 2005). Cytochrome c was the firstly identified apoptogenic factor released from mitochondria into the cytosol, where it induces apoptosome formation through the activation of caspases. Other proteins, such as apoptosis inducing factor (AIF), have been subsequently identified as mitochondrial released factors. AIF contributes to apoptotic nuclear DNA damage (Bras et al., 2005). in a caspase-independent way 展开更多
关键词 AIF Relevance and therapeutic potential of Cyp A targeting to block apoptosis inducing factor-mediated neuronal cell death
下载PDF
Role of chloride channels in nitric oxide-induced rat hippocampal neuronal apoptosis in vitro 被引量:9
20
作者 Quanzhong Chang Shuling Zhang Jinbao Yin 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第9期690-694,共5页
BACKGROUND:Chloride channels participate in non-neuronal apoptosis.However,it remains unclear whether chloride channels are involved in ischemic neuronal apoptosis.OBJECTIVE:To explore the effects of 4-acetamido-4'... BACKGROUND:Chloride channels participate in non-neuronal apoptosis.However,it remains unclear whether chloride channels are involved in ischemic neuronal apoptosis.OBJECTIVE:To explore the effects of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS),two chloride channel blockers,on the hippocampal neuronal apoptosis induced by 3-morpholinosydnonimine (SIN-1) based on the nitric oxide toxicity theory of neuronal apoptosis following ischemic brain injury.DESIGN,TIME AND SETTING:Comparative observation and in vitro experiments were performed at the laboratory of Zhuhai Campus of Zunyi Medical College from January to May 2009.MATERIALS:SIN-1,SITS,and DIDS were purchased from Sigma,USA.METHODS:Hippocampal neurons from Sprague-Dawley rats,aged 1 day,were cultured In vitro for 12 days and randomly assigned to control,SIN-1,or chloride channel blocker groups.SIN-1 group neurons were induced by SIN-1 for 18 hours to establish a model of ischemic neuronal apoptosis.Neurons in chloride channel blocker groups were treated with SITS or DIDS plus SIN-1 for 18 hours.The controls were cultured in DMEM/Ham's F12 complete medium alone.MAIN OUTCOME MEASURES:The apoptotic neurons and nuclear appearance were detected by Hoechst 33258 fluorescence staining; neuronal viability was quantitatively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis.Caspase-3 activity was analyzed by Western blot.RESULTS:SIN-1 (1 mmol/L) dramatically induced apoptosis (50%-60%).SITS and DIDS inhibited nitric oxide-induced neuronal injury in a dose-dependent manner,suppressed caspase-3 activation,reduced neuronal apoptosis,and improved neuronal survival.CONCLUSION:Chloride channel blockers can protect against neuronal injury induced by NO.Chloride channels might be involved in neuronal apoptosis following cerebral ischemia. 展开更多
关键词 chloride channel nitric oxide hippocampal neuron RATS cerebral ischemia neural regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部