OBJECTIVE To investigate the effect of quercetin on primary cultured newborn rat cortex neuron cell which is estrogen depletion,and discuss the possible mechanism,to provide new ideas and strategies for developing a d...OBJECTIVE To investigate the effect of quercetin on primary cultured newborn rat cortex neuron cell which is estrogen depletion,and discuss the possible mechanism,to provide new ideas and strategies for developing a drug of neurodegenerative disease.METHODS Rat cortex neurons were isolated from one day old Sprague Dawley rats and treated with estrogen,quercetin and estrogen receptor antagonists(ICI182,780).Cell viability was determined by MTT assay,neurite outgrowth was measured by fluorescent microsope and estrogen receptors were determine by Western blot.RESULTS Quercetin functions like estrogen to increase cortex neuronal cell viability,the Que(50,100μmol·L^(-1))group compared with the control group could significantly improve the activity of the cortical neurons(P<0.05).It can also increase neurite out growth,the Que(50,100μmol·L^(-1))group significantly promoted the formation of synapse,most of the neurons were full,and the synapses of neurons became thick,growth,and connect to a dense neural network.And in the Western blot experiments,Que(50,100μmol·L^(-1))group could obviously increase the expression of estrogen receptor alpha protein,in addition,the neural protective effect of quercetin can be inhibited by ICI182,780.CONCLUSION Quercetin like estrogen can protected cortex neuronal and the effect of quercetin on cortex neuronal cells was mediated by estrogen receptor alpha.展开更多
BACKGROUND: Both c-Fos protein and nitricoxide synthase (NOS) have been used as general indexes in relative research about neurons, but it is lack of reports that c-Fos protein and NOS are applied synchronously to ...BACKGROUND: Both c-Fos protein and nitricoxide synthase (NOS) have been used as general indexes in relative research about neurons, but it is lack of reports that c-Fos protein and NOS are applied synchronously to study the neurons of hypoxic fetal rats in uterus. OBJECTIVE: To study the effect of hypoxia in uterus on the expression of c-Fos protein and NOS in neurons of cerebral cortex from fetal rats and whether Angelica sinensis has the protective effect on these neurons in hypoxia. DESIGN: Randomized control experiment.SETTING : Department of Histology and Embryology, Luzhou Medical College.MATERIALS : Twelve adult female Wistar rats in oestrum and 1 male Wistar rat with bodymass from 220 to 250 g were chosen. Parenteral solution of Angelica sinensis mainly contained angelica sinensis, 10 mL/ampoule, was provided by Department of Agent of the Second Hospital Affiliated to Hubei Medical University (batch number: 01062310). METHODS : This experiment was completed in the Department of Histology and Embryology of Luzhou Medical College from September 2003 to June 2004. ①Twelve adult female Wistar rats in oestrum and 1 male Wistar rat were housed in one rearing cage. Vaginal embolus was performed on conceive female rat at 8: 00 am next day. On the 15^th conceiving day, all conceiving rats were divided randomly into three groups: control group, hypoxia group and Angelica group with 4 in each group. Rats in hypoxia group and Angelica group were modeled with hypotonic hypoxia in uterus. Angelica group: Rats were injected with 8 mL/kg Angelica sinensis injection through caudal veins before hypoxia. Hypoxia group: Rats were injected with the same volume of saline. Control group: Rats were not modeled and fed with normal way. ② Twenty embryos of rats were chosen randomly from each group and then routinely embedded in paraffin. Paraffin sections were cut from the brain of embryos to anterior fontanelle. Double-label staining was used to detect the expression of nNOS and c-Fos in neurons of cerebral cortex from embryos of rats. OLYMPUS Bx-50 microscope was used to observe sections and DP12 digit camera was also used under 400 times to detect types of cells. Under microscope, the number of c-Fos, NOS, c-Fos/NOS positive neurons in cerebral cortex from embryos of rats were counted in 2 fields with magnification of 400 in one section per animal. ③ The data in experiments were analyzed by one-way analysis of variance (ANOVA) followed by q test. MAIN OUTCOME MEASURES: ① Results of immunohistochemical double-label staining of c-Fos/NOS from cerebral cortex; ② Comparison of amount immunohistochemical double-label staining of c-Fos/NOS positive cells from cerebral cortex. RESULTS:① The positive NOS cells and c-Fos/NOS cells in the three groups were mainly distributed in cerebral cortex, but positive c-Fos neurons were not observed. ② Positive NOS cells and c-Fos/NOS cells in hypoxia group were more than those in control group (76.55±12.02, 50.45±10.39; 33.35±7.42, 26.35±6.67, P 〈 0.05), but those in Angelica group were less than those in hypoxia group (51.70±9.82, 35.65±8.37, P 〈 0.05). CONCLUSION: Hypoxia can stimulate the increase of expression of c-Fos protein and NOS in neurons of cerebral cortex. However, Angelica sinensis can decrease this expression so as to play a protective role in cerebral neurons of hypoxic fetal rats.展开更多
Aim: Datura stramonium (DS) is a known hallucinogen and depressant of the central nervous system, but it is commonly used in alcoholic beverages to increase intoxication. Pharmacological, physiological and ultra-struc...Aim: Datura stramonium (DS) is a known hallucinogen and depressant of the central nervous system, but it is commonly used in alcoholic beverages to increase intoxication. Pharmacological, physiological and ultra-structural studies have demonstrated the neurotoxicity of this drug inanimals and humans at high doses. The present study investigated the histological patterns of neurodegeneration of frontal cortex (FC) neurons in Wistar rats treated with high doses of DS seed extract. Materials and methods: Ethanolic extract of DS dried seeds was diluted in normal saline and administered to male and female Wistar rats weighing 200 g - 250 g. The animals were first placed in three groups which were further sub-divided into four sub-groups. The treated sub-groups received intraperitoneal administration (i.p.) of 750 mg/kg of diluted DS seed extract once daily in group 1, twice daily (1500 mg/kg/day) in group 2 and thrice daily (2250 mg/kg/day) in group 3. The treatment was carried out for 4 weeks while the control groups received normal saline during the same period. The rats were euthanized and sections of the frontal cortices of the brain were histologically processed from all groups. Silver impregnation stain for degenerating axons and neurons was used to elucidate the pattern of degeneration induced by DS seed extract on the neurons of the FC. Results: The results of intraperitoneal administration of DS extract showed no changes in groups 1 & 2 treated rats while group 3 showed a significant pattern of histological changes like axonal atrophy, vacuolization and neuronal deaths in the frontal cortices neurons compared to the controls. Conclusion: DS may have a specific pattern of neurodegeneration at higher doses of administration. This could provide a useful model in understanding how DS intoxication can affect frontal cortex neurons with an implication of neurological disorders, mental diseases and behavioural deficits.展开更多
The prefrontal cortex of a human full termnewborn infant just after accidental death was studies by mcans of immunocytochemical technique with antibody directedagainst GABA(Immunonuclear Corp.)and ABC kit(Vector)。GAB...The prefrontal cortex of a human full termnewborn infant just after accidental death was studies by mcans of immunocytochemical technique with antibody directedagainst GABA(Immunonuclear Corp.)and ABC kit(Vector)。GABA-containing neurons were found over all layers and all were nonpyramidal cells.The laminar distribution of GABA-containing ne-urons was not even between different layers,density in laye Ⅱ was prominently higher than any other layers,density in layer Ⅲ and layer Ⅳ was higher than that in layer V and Ⅵ.展开更多
Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A ...Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.展开更多
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right media...Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.展开更多
Excess activation and expression of large-conductance Ca^2+-activated K^+ channels(BKCa channels) may be an important mechanism for delayed neuronal death after cerebral ischemia/reperfusion injury. Electroacupunc...Excess activation and expression of large-conductance Ca^2+-activated K^+ channels(BKCa channels) may be an important mechanism for delayed neuronal death after cerebral ischemia/reperfusion injury. Electroacupuncture can regulate BKCa channels after cerebral ischemia/reperfusion injury, but the precise mechanism remains unclear. In this study, we established a rat model of cerebral ischemia/reperfusion injury. Model rats received electroacupuncture of 1 m A and 2 Hz at Shuigou(GV26) for 10 minutes, once every 12 hours for a total of six times in 72 hours. We found that in cerebral ischemia/reperfusion injury rats, ischemic changes in the cerebral cortex were mitigated after electroacupuncture. Moreover, BKCa channel protein and m RNA expression were reduced in the cerebral cortex and neurological function noticeably improved. These changes did not occur after electroacupuncture at a non-acupoint(5 mm lateral to the left side of Shuigou). Thus, our findings indicate that electroacupuncture at Shuigou improves neurological function in rats following cerebral ischemia/reperfusion injury, and may be associated with down-regulation of BKCa channel protein and m RNA expression. Additionally, our results suggest that the Shuigou acupoint has functional specificity.展开更多
Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary ...Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary visual cortex(V1) improves the orientation-and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells(RGCs) and V1 neurons in ChR2fl/~+; PV-Cre mice. Our results showed that the activation of PV~+RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction-and orientation-selectivity. Longduration activation of PV~+interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV~+RGCs and V1 neurons improves feature-selectivity in mice.展开更多
Aging has been considered a natural process of any living being.The rate of aging depends on many factors,including genetic and environmental factors.For this reason,many researchers in this field suggest that aging i...Aging has been considered a natural process of any living being.The rate of aging depends on many factors,including genetic and environmental factors.For this reason,many researchers in this field suggest that aging is an epigenetic process.Nowadays,the age groups have undergone a change.展开更多
Transcranial magnetic stimulation-a tool used in humans:Transcranial magnetic stimulation(TMS)is a non-invasive widespread clinical tool used to stimulate cortical areas in human subjects.This technique utilizes a ...Transcranial magnetic stimulation-a tool used in humans:Transcranial magnetic stimulation(TMS)is a non-invasive widespread clinical tool used to stimulate cortical areas in human subjects.This technique utilizes a brief,highly intense magnetic field applied to cortical areas,which locally depolarized interneurons(Weber and Eisen,2002).展开更多
An imbalance between activities of different structures and neurotransmitter systems in the brain is suggested to be the main cause of its abnormal functioning in neurodegenerative pathologies.Electroencephalogram(EE...An imbalance between activities of different structures and neurotransmitter systems in the brain is suggested to be the main cause of its abnormal functioning in neurodegenerative pathologies.Electroencephalogram(EEG)registered from areas specifically linked with a disease in combination with pharmacological testing of involved mediatory systems allows discovery of its progression and mechanism(s). This, in turn, potentiates development of perspective approaches for early diagnostic and effective treatment of neurodegenerative disorders.展开更多
Objective: To observe the effects of electroacupuncture on hippocampal and cortical apoptosis in a mouse model of cerebral ischemia-reperfusion injury. Methods: Mouse models established by repeated cerebral ischemia-r...Objective: To observe the effects of electroacupuncture on hippocampal and cortical apoptosis in a mouse model of cerebral ischemia-reperfusion injury. Methods: Mouse models established by repeated cerebral ischemia-reperfusion, followed by electroacupuncture at Shenshu, Geshu, and Baihui points. The control group mice were intragastrically administered Hydergine. On day 1 and 7 post-treatment, hippocampal and cortical apoptosis was detected by terminal-deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL), and apoptosis images in the hippocampal CA1 zone and cortical area were analyzed. Results: In the model group, apoptotic cells were detected one day after treatment and some cellular fibers were disarrayed. By day 7 post-treatment, there was an increase in the number of apoptotic cells in the hippocampal CA1 region. In addition, there were apoptotic cells in the cortical area, the cortical layers were thinner with localized neuronal loss and sieve-like lymphocyte infiltration, as well as glial cell proliferation and visible infarct lesions. However, in the Hydergine and electroacupuncture groups, there was a small number of apoptotic cells. At 7 days post-treatment in the model group, field number, numerical density on area, and surface density were increased. However, in the Hydergine and electroacupuncture groups these parameters were decreased (P<0.01), with a significant difference between the two treatment groups (P<0.01). Conclusion: Electroacupuncture treatment inhibited apoptosis and provided neuroprotection.展开更多
基金supported by Science and Technology Research Project of Hebei Higher School,Hebei Education Department(ZD2015131)Natural Science Foundation of Hebei Province(H2012405016)
文摘OBJECTIVE To investigate the effect of quercetin on primary cultured newborn rat cortex neuron cell which is estrogen depletion,and discuss the possible mechanism,to provide new ideas and strategies for developing a drug of neurodegenerative disease.METHODS Rat cortex neurons were isolated from one day old Sprague Dawley rats and treated with estrogen,quercetin and estrogen receptor antagonists(ICI182,780).Cell viability was determined by MTT assay,neurite outgrowth was measured by fluorescent microsope and estrogen receptors were determine by Western blot.RESULTS Quercetin functions like estrogen to increase cortex neuronal cell viability,the Que(50,100μmol·L^(-1))group compared with the control group could significantly improve the activity of the cortical neurons(P<0.05).It can also increase neurite out growth,the Que(50,100μmol·L^(-1))group significantly promoted the formation of synapse,most of the neurons were full,and the synapses of neurons became thick,growth,and connect to a dense neural network.And in the Western blot experiments,Que(50,100μmol·L^(-1))group could obviously increase the expression of estrogen receptor alpha protein,in addition,the neural protective effect of quercetin can be inhibited by ICI182,780.CONCLUSION Quercetin like estrogen can protected cortex neuronal and the effect of quercetin on cortex neuronal cells was mediated by estrogen receptor alpha.
基金the Natural Science Foundation of Sichuan Educational Bureau, No. Chuanjiaoji (2001) 149-01LA40
文摘BACKGROUND: Both c-Fos protein and nitricoxide synthase (NOS) have been used as general indexes in relative research about neurons, but it is lack of reports that c-Fos protein and NOS are applied synchronously to study the neurons of hypoxic fetal rats in uterus. OBJECTIVE: To study the effect of hypoxia in uterus on the expression of c-Fos protein and NOS in neurons of cerebral cortex from fetal rats and whether Angelica sinensis has the protective effect on these neurons in hypoxia. DESIGN: Randomized control experiment.SETTING : Department of Histology and Embryology, Luzhou Medical College.MATERIALS : Twelve adult female Wistar rats in oestrum and 1 male Wistar rat with bodymass from 220 to 250 g were chosen. Parenteral solution of Angelica sinensis mainly contained angelica sinensis, 10 mL/ampoule, was provided by Department of Agent of the Second Hospital Affiliated to Hubei Medical University (batch number: 01062310). METHODS : This experiment was completed in the Department of Histology and Embryology of Luzhou Medical College from September 2003 to June 2004. ①Twelve adult female Wistar rats in oestrum and 1 male Wistar rat were housed in one rearing cage. Vaginal embolus was performed on conceive female rat at 8: 00 am next day. On the 15^th conceiving day, all conceiving rats were divided randomly into three groups: control group, hypoxia group and Angelica group with 4 in each group. Rats in hypoxia group and Angelica group were modeled with hypotonic hypoxia in uterus. Angelica group: Rats were injected with 8 mL/kg Angelica sinensis injection through caudal veins before hypoxia. Hypoxia group: Rats were injected with the same volume of saline. Control group: Rats were not modeled and fed with normal way. ② Twenty embryos of rats were chosen randomly from each group and then routinely embedded in paraffin. Paraffin sections were cut from the brain of embryos to anterior fontanelle. Double-label staining was used to detect the expression of nNOS and c-Fos in neurons of cerebral cortex from embryos of rats. OLYMPUS Bx-50 microscope was used to observe sections and DP12 digit camera was also used under 400 times to detect types of cells. Under microscope, the number of c-Fos, NOS, c-Fos/NOS positive neurons in cerebral cortex from embryos of rats were counted in 2 fields with magnification of 400 in one section per animal. ③ The data in experiments were analyzed by one-way analysis of variance (ANOVA) followed by q test. MAIN OUTCOME MEASURES: ① Results of immunohistochemical double-label staining of c-Fos/NOS from cerebral cortex; ② Comparison of amount immunohistochemical double-label staining of c-Fos/NOS positive cells from cerebral cortex. RESULTS:① The positive NOS cells and c-Fos/NOS cells in the three groups were mainly distributed in cerebral cortex, but positive c-Fos neurons were not observed. ② Positive NOS cells and c-Fos/NOS cells in hypoxia group were more than those in control group (76.55±12.02, 50.45±10.39; 33.35±7.42, 26.35±6.67, P 〈 0.05), but those in Angelica group were less than those in hypoxia group (51.70±9.82, 35.65±8.37, P 〈 0.05). CONCLUSION: Hypoxia can stimulate the increase of expression of c-Fos protein and NOS in neurons of cerebral cortex. However, Angelica sinensis can decrease this expression so as to play a protective role in cerebral neurons of hypoxic fetal rats.
文摘Aim: Datura stramonium (DS) is a known hallucinogen and depressant of the central nervous system, but it is commonly used in alcoholic beverages to increase intoxication. Pharmacological, physiological and ultra-structural studies have demonstrated the neurotoxicity of this drug inanimals and humans at high doses. The present study investigated the histological patterns of neurodegeneration of frontal cortex (FC) neurons in Wistar rats treated with high doses of DS seed extract. Materials and methods: Ethanolic extract of DS dried seeds was diluted in normal saline and administered to male and female Wistar rats weighing 200 g - 250 g. The animals were first placed in three groups which were further sub-divided into four sub-groups. The treated sub-groups received intraperitoneal administration (i.p.) of 750 mg/kg of diluted DS seed extract once daily in group 1, twice daily (1500 mg/kg/day) in group 2 and thrice daily (2250 mg/kg/day) in group 3. The treatment was carried out for 4 weeks while the control groups received normal saline during the same period. The rats were euthanized and sections of the frontal cortices of the brain were histologically processed from all groups. Silver impregnation stain for degenerating axons and neurons was used to elucidate the pattern of degeneration induced by DS seed extract on the neurons of the FC. Results: The results of intraperitoneal administration of DS extract showed no changes in groups 1 & 2 treated rats while group 3 showed a significant pattern of histological changes like axonal atrophy, vacuolization and neuronal deaths in the frontal cortices neurons compared to the controls. Conclusion: DS may have a specific pattern of neurodegeneration at higher doses of administration. This could provide a useful model in understanding how DS intoxication can affect frontal cortex neurons with an implication of neurological disorders, mental diseases and behavioural deficits.
文摘The prefrontal cortex of a human full termnewborn infant just after accidental death was studies by mcans of immunocytochemical technique with antibody directedagainst GABA(Immunonuclear Corp.)and ABC kit(Vector)。GABA-containing neurons were found over all layers and all were nonpyramidal cells.The laminar distribution of GABA-containing ne-urons was not even between different layers,density in laye Ⅱ was prominently higher than any other layers,density in layer Ⅲ and layer Ⅳ was higher than that in layer V and Ⅵ.
基金the National Natural Science Foundation of China, No.30903123, 30901329the Project of Science and Technology of Jilin Province, No.20090741, 20090185
文摘Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.
基金supported by the National Natural Science Foundation of China,No.81471288
文摘Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.
基金supported by the National Natural Science Foundation of China,No.81173339,81303020the Program for Changjiang Scholars and Innovative Research Team in University of Chinathe Key Project of the Natural Science Foundation of Tianjin of China,No.11JCZDJC19800
文摘Excess activation and expression of large-conductance Ca^2+-activated K^+ channels(BKCa channels) may be an important mechanism for delayed neuronal death after cerebral ischemia/reperfusion injury. Electroacupuncture can regulate BKCa channels after cerebral ischemia/reperfusion injury, but the precise mechanism remains unclear. In this study, we established a rat model of cerebral ischemia/reperfusion injury. Model rats received electroacupuncture of 1 m A and 2 Hz at Shuigou(GV26) for 10 minutes, once every 12 hours for a total of six times in 72 hours. We found that in cerebral ischemia/reperfusion injury rats, ischemic changes in the cerebral cortex were mitigated after electroacupuncture. Moreover, BKCa channel protein and m RNA expression were reduced in the cerebral cortex and neurological function noticeably improved. These changes did not occur after electroacupuncture at a non-acupoint(5 mm lateral to the left side of Shuigou). Thus, our findings indicate that electroacupuncture at Shuigou improves neurological function in rats following cerebral ischemia/reperfusion injury, and may be associated with down-regulation of BKCa channel protein and m RNA expression. Additionally, our results suggest that the Shuigou acupoint has functional specificity.
基金supported by the grants of National Natural Science Foundation of China(31271158,31421091,and 31422025)the Science and Technology Commission of Shanghai Municipality,China(13PJ1401000)the Young 1000 Plan and the Ministry of Science and Technology of China(2015AA020512)
文摘Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary visual cortex(V1) improves the orientation-and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells(RGCs) and V1 neurons in ChR2fl/~+; PV-Cre mice. Our results showed that the activation of PV~+RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction-and orientation-selectivity. Longduration activation of PV~+interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV~+RGCs and V1 neurons improves feature-selectivity in mice.
文摘Aging has been considered a natural process of any living being.The rate of aging depends on many factors,including genetic and environmental factors.For this reason,many researchers in this field suggest that aging is an epigenetic process.Nowadays,the age groups have undergone a change.
文摘Transcranial magnetic stimulation-a tool used in humans:Transcranial magnetic stimulation(TMS)is a non-invasive widespread clinical tool used to stimulate cortical areas in human subjects.This technique utilizes a brief,highly intense magnetic field applied to cortical areas,which locally depolarized interneurons(Weber and Eisen,2002).
基金Grant RFBR 16-04-00942(Russia)to NB:“A study of the brain dopaminergic system involvement in mechanisms of Alzheimer’s disease on models of its sporadic and inherited types”
文摘An imbalance between activities of different structures and neurotransmitter systems in the brain is suggested to be the main cause of its abnormal functioning in neurodegenerative pathologies.Electroencephalogram(EEG)registered from areas specifically linked with a disease in combination with pharmacological testing of involved mediatory systems allows discovery of its progression and mechanism(s). This, in turn, potentiates development of perspective approaches for early diagnostic and effective treatment of neurodegenerative disorders.
基金supported by Department of Science & Technology of Hebei Province (No.06276102D-31)Department of Health of Hebei Province (No.2005156)Training Program for Backbone of Scientific Research Talents of Hebei Medical University (2007)
文摘Objective: To observe the effects of electroacupuncture on hippocampal and cortical apoptosis in a mouse model of cerebral ischemia-reperfusion injury. Methods: Mouse models established by repeated cerebral ischemia-reperfusion, followed by electroacupuncture at Shenshu, Geshu, and Baihui points. The control group mice were intragastrically administered Hydergine. On day 1 and 7 post-treatment, hippocampal and cortical apoptosis was detected by terminal-deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL), and apoptosis images in the hippocampal CA1 zone and cortical area were analyzed. Results: In the model group, apoptotic cells were detected one day after treatment and some cellular fibers were disarrayed. By day 7 post-treatment, there was an increase in the number of apoptotic cells in the hippocampal CA1 region. In addition, there were apoptotic cells in the cortical area, the cortical layers were thinner with localized neuronal loss and sieve-like lymphocyte infiltration, as well as glial cell proliferation and visible infarct lesions. However, in the Hydergine and electroacupuncture groups, there was a small number of apoptotic cells. At 7 days post-treatment in the model group, field number, numerical density on area, and surface density were increased. However, in the Hydergine and electroacupuncture groups these parameters were decreased (P<0.01), with a significant difference between the two treatment groups (P<0.01). Conclusion: Electroacupuncture treatment inhibited apoptosis and provided neuroprotection.