Melanins are widely used in medicine, pharmacology and cosmetics. Different technologies have been used to obtain melanin including: chemical synthesis based on oxidation of tyrosine and its derivatives; extraction f...Melanins are widely used in medicine, pharmacology and cosmetics. Different technologies have been used to obtain melanin including: chemical synthesis based on oxidation of tyrosine and its derivatives; extraction from animal materials; alkaline extraction from plant material; and microbiological synthesis. A few number of works have been published that were focused on purification of water insoluble 3,4-dihy- droxy-phenylalanine-melanins (Kukulianskaia et al., 2002). The majority of synthetic and natural melanins are insoluble in wa- ter that significantly complicates preparation of pharmacolog- ical and cosmetic preparations. Obtaining of low-cost soluble biotechnological melanin can speed up application of melanin in medicine and other fields. For the first time, melanin-syn-thesizing strain with high level of pigment synthesis - Bacillus thuringiensis was obtained. The ecologically safe technology of biosynthesis, isolation and purification of the bacterial melanin has been elaborated.展开更多
The initial trauma to the spinal cord is just the starting point for a cascade of endogenous events that will collectively determine the injury extension. These secondary events include, but are not limited to: gluta...The initial trauma to the spinal cord is just the starting point for a cascade of endogenous events that will collectively determine the injury extension. These secondary events include, but are not limited to: glutamate excitoxicity, induction of apoptotic pathways, ionic imbalances and the development of a strong and dysfunctional inflammatory response. The secondary injury is associated to an aggravation of neuronal damage increasing the extent of neurological deficits (Ek et al., 2010).展开更多
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxicischemic event.This devastating condition can lead to long-term neurological deficits or even death.After hypoxic-ischemic ...One of the most important causes of brain injury in the neonatal period is a perinatal hypoxicischemic event.This devastating condition can lead to long-term neurological deficits or even death.After hypoxic-ischemic brain injury,a variety of specific cellular mechanisms are set in motion,triggering cell damage and finally producing cell death.Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury.After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury,various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes.Among them,the endocannabinoid system emerges as a natural system of neuroprotection.The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury,acting as a natural neuroprotectant.The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury,and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.展开更多
Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal bra...Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.展开更多
Alzheimer's disease(AD)is the most common cause of senile dementia.It is characterized by the formation of plaques mainly composed of the amyloid-beta peptide(Aβ).Diverse lines of evidence support the notion tha...Alzheimer's disease(AD)is the most common cause of senile dementia.It is characterized by the formation of plaques mainly composed of the amyloid-beta peptide(Aβ).Diverse lines of evidence support the notion that accumulation of Aβis a primary cause of AD pathogenesis(Huang and Mucke,2012).Amyloid precusor protein(APP)processing is dependent on its subcelluar trafficking pathway:Aβis derived from APP by proteolyric processing.展开更多
What makes the acute optic neuritis model unique in an era of trials for neuroprotective and myelin repair agents?Acute optic neuritis(AON)is a common,and often the earliest manifestation of central nervous system...What makes the acute optic neuritis model unique in an era of trials for neuroprotective and myelin repair agents?Acute optic neuritis(AON)is a common,and often the earliest manifestation of central nervous system(CNS)inflammatory demyelinating disorders like multiple sclerosis (MS) and neuromyelitis optica (NMO).展开更多
Neurodegeneration is characterized by the progressive and permanent loss of neurons.Degeneration typically results in a debilitating loss of function in an otherwise healthy person.Neurodegenerative diseases have enor...Neurodegeneration is characterized by the progressive and permanent loss of neurons.Degeneration typically results in a debilitating loss of function in an otherwise healthy person.Neurodegenerative diseases have enormous direct health care costs,with some estimates for diseases.展开更多
Excitotoxicity refers to toxicity caused by abnormal concentrations of glutamate in the synaptic cleft that may lead to neuronal death. Since its description, the phenomenon of glutamatergic excitotoxicity has been im...Excitotoxicity refers to toxicity caused by abnormal concentrations of glutamate in the synaptic cleft that may lead to neuronal death. Since its description, the phenomenon of glutamatergic excitotoxicity has been implicated in the physiopathology of a wide range of neurological and psychiatric disorders, from acute brain damage such as traumatic brain injury, ischemia as well as chronic condi- tions like epilepsy, depression and neurodegenerative pathologies such as Huntington's, Parkinson's and Alzheimer's diseases. Exces- sive stimulation of glutamatergic receptors, mainly N-methyl-D-as- partate (NMDA) receptors (NMDAR), can have numerous adverse effects on the cell viability, including increased nitric oxide release (NO), activation of proteases, increased production of reactive oxygen (ROS) and nitrogen (RNS) species and massive influx of calcium ions (Ca2+), resulting in cell death. Thus, the use of strategies that modulate the excitotoxic cell damage represents a perspective for the treatment of diseases such as Parkinson's and Alzheimer's diseases, ischemia, traumatic brain injury (TBI) and seizures.展开更多
Hypoxia is a condition found commonly in several disorders,such as ischemia,asthma,anemia and neonatal hypoxia.Individuals subjected suddenly to high altitude or extreme exercise are also challenged to low oxygen(O2...Hypoxia is a condition found commonly in several disorders,such as ischemia,asthma,anemia and neonatal hypoxia.Individuals subjected suddenly to high altitude or extreme exercise are also challenged to low oxygen(O2)levels.Since the brain presents elevated basal O_2 consumption,this organ is readily affected by hypoxia.For this reason,展开更多
文摘Melanins are widely used in medicine, pharmacology and cosmetics. Different technologies have been used to obtain melanin including: chemical synthesis based on oxidation of tyrosine and its derivatives; extraction from animal materials; alkaline extraction from plant material; and microbiological synthesis. A few number of works have been published that were focused on purification of water insoluble 3,4-dihy- droxy-phenylalanine-melanins (Kukulianskaia et al., 2002). The majority of synthetic and natural melanins are insoluble in wa- ter that significantly complicates preparation of pharmacolog- ical and cosmetic preparations. Obtaining of low-cost soluble biotechnological melanin can speed up application of melanin in medicine and other fields. For the first time, melanin-syn-thesizing strain with high level of pigment synthesis - Bacillus thuringiensis was obtained. The ecologically safe technology of biosynthesis, isolation and purification of the bacterial melanin has been elaborated.
基金supported by Prémios Santa Casa Neurociências-Prize Meloe Castro for Spinal Cord Injury ResearchPortuguese Foundation for Science and Technology(Financiado noambito do Projecto 3599-Promover a Producao Científica e Desenvolvimento Tecnológico e a Constituicao de Redes Temáticas(3599-PPCDT)+2 种基金project:PTDC/DTP-FTO/5109/2014Post-Doctoral fellowship-SFRH/BPD/97701/2013-to N.A.SilvaIF Development Grant to A.J.Salgado
文摘The initial trauma to the spinal cord is just the starting point for a cascade of endogenous events that will collectively determine the injury extension. These secondary events include, but are not limited to: glutamate excitoxicity, induction of apoptotic pathways, ionic imbalances and the development of a strong and dysfunctional inflammatory response. The secondary injury is associated to an aggravation of neuronal damage increasing the extent of neurological deficits (Ek et al., 2010).
基金supported by grants from Funding Health Care of Spanish Ministry of Health,No. PS09/ 02326from the Basque Government,No. GCI-07/79,IT-287-07
文摘One of the most important causes of brain injury in the neonatal period is a perinatal hypoxicischemic event.This devastating condition can lead to long-term neurological deficits or even death.After hypoxic-ischemic brain injury,a variety of specific cellular mechanisms are set in motion,triggering cell damage and finally producing cell death.Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury.After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury,various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes.Among them,the endocannabinoid system emerges as a natural system of neuroprotection.The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury,acting as a natural neuroprotectant.The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury,and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
基金supported by grants from Fondo de Investigación Sanitaria of Spanish Ministry of Health(PS09/02326)the Basque Government(GCI-07/79,IT-287-07)
文摘Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
文摘Alzheimer's disease(AD)is the most common cause of senile dementia.It is characterized by the formation of plaques mainly composed of the amyloid-beta peptide(Aβ).Diverse lines of evidence support the notion that accumulation of Aβis a primary cause of AD pathogenesis(Huang and Mucke,2012).Amyloid precusor protein(APP)processing is dependent on its subcelluar trafficking pathway:Aβis derived from APP by proteolyric processing.
文摘What makes the acute optic neuritis model unique in an era of trials for neuroprotective and myelin repair agents?Acute optic neuritis(AON)is a common,and often the earliest manifestation of central nervous system(CNS)inflammatory demyelinating disorders like multiple sclerosis (MS) and neuromyelitis optica (NMO).
文摘Neurodegeneration is characterized by the progressive and permanent loss of neurons.Degeneration typically results in a debilitating loss of function in an otherwise healthy person.Neurodegenerative diseases have enormous direct health care costs,with some estimates for diseases.
基金grants from CNPq (Universal 2012 INCT-Excitotoxicity and Neuroprotection)+1 种基金FAPESC (NENASC/PRONEX)CAPES (PVE 052/2012) to C.I.T
文摘Excitotoxicity refers to toxicity caused by abnormal concentrations of glutamate in the synaptic cleft that may lead to neuronal death. Since its description, the phenomenon of glutamatergic excitotoxicity has been implicated in the physiopathology of a wide range of neurological and psychiatric disorders, from acute brain damage such as traumatic brain injury, ischemia as well as chronic condi- tions like epilepsy, depression and neurodegenerative pathologies such as Huntington's, Parkinson's and Alzheimer's diseases. Exces- sive stimulation of glutamatergic receptors, mainly N-methyl-D-as- partate (NMDA) receptors (NMDAR), can have numerous adverse effects on the cell viability, including increased nitric oxide release (NO), activation of proteases, increased production of reactive oxygen (ROS) and nitrogen (RNS) species and massive influx of calcium ions (Ca2+), resulting in cell death. Thus, the use of strategies that modulate the excitotoxic cell damage represents a perspective for the treatment of diseases such as Parkinson's and Alzheimer's diseases, ischemia, traumatic brain injury (TBI) and seizures.
基金Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)INCT-Excitoxicidade e Neuroprotecao and by FINEP research grant “Rede Instituto Brasileiro de Neurociencia (IBN-Net)” #01.06.0842-00
文摘Hypoxia is a condition found commonly in several disorders,such as ischemia,asthma,anemia and neonatal hypoxia.Individuals subjected suddenly to high altitude or extreme exercise are also challenged to low oxygen(O2)levels.Since the brain presents elevated basal O_2 consumption,this organ is readily affected by hypoxia.For this reason,