期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology
1
作者 Yiyang Qin Wenzhen Zhu +6 位作者 Tingting Guo Yiran Zhang Tingting Xing Peng Yin Shihua Li Xiao-Jiang Li Su Yang 《Neural Regeneration Research》 SCIE CAS 2025年第9期2655-2666,共12页
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r... Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy. 展开更多
关键词 androgen receptor mesencephalic astrocyte-derived neurotrophic factor mouse model NEURODEGENERATION neuronal loss neurotrophic factor polyglutamine disease protein misfolding spinal and bulbar muscular atrophy transcription factor
下载PDF
The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents:a meta-analysis
2
作者 Xueyun Shao Longfei He Yangyang Liu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1513-1520,共8页
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra... Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408). 展开更多
关键词 adolescents brain-derived neurotrophic factor CHILDREN EXERCISE META-ANALYSIS randomized controlled trials
下载PDF
Recovery of the injured neural system through gene delivery to surviving neurons in Parkinson’s disease
3
作者 Chanchal Sharma Sehwan Kim +1 位作者 Hyemi Eo Sang Ryong Kim 《Neural Regeneration Research》 SCIE CAS 2025年第10期2855-2861,共7页
A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to ... A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to address the underlying neuronal loss.This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches.Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems,dosages,and transgenes expressed in the central nervous system,signifying tangible and substantial progress in applying gene therapy as a promising Parkinson’s disease treatment.Intriguingly,at diagnosis,many dopamine neurons remain in the substantia nigra,offering a potential window for recovery and survival.We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research.Moreover,innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson’s disease.In this review,we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum,offering a novel approach to addressing Parkinson’s disease at its core. 展开更多
关键词 adeno-associated virus gene therapy neuroprotection neurorestoration neurotrophic factor nigrostriatal dopamine pathway pro-survival protein
下载PDF
Glucocorticoid receptor signaling in the brain and its involvement in cognitive function
4
作者 Chonglin Su Taiqi Huang +3 位作者 Meiyu Zhang Yanyu Zhang Yan Zeng Xingxing Chen 《Neural Regeneration Research》 SCIE CAS 2025年第9期2520-2537,共18页
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo... The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders. 展开更多
关键词 brain-derived neurotrophic factor calcium signaling glucocorticoid receptor GLUCOCORTICOID glutamate transmission hypothalamic-pituitary-adrenal axis long-term potentiation neurocognitive disorders NEUROPLASTICITY stress
下载PDF
Targeting TrkB–PSD-95 coupling to mitigate neurological disorders
5
作者 Xin Yang Yu-Wen Alvin Huang John Marshall 《Neural Regeneration Research》 SCIE CAS 2025年第3期715-724,共10页
Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at... Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects. 展开更多
关键词 Angelman syndrome AUTISM brain-derived neurotrophic factor DEPRESSION neurodegenerative disorder neurodevelopmental disorder postsynaptic density protein-95 synaptic plasticity TRKB
下载PDF
Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination
6
作者 Josep Tomàs Víctor Cilleros-Mañé +7 位作者 Laia Just-Borràs Marta Balanyà-Segura Aleksandra Polishchuk Laura Nadal Marta Tomàs Carolina Silvera-Simón Manel M.Santafé Maria A.Lanuza 《Neural Regeneration Research》 SCIE CAS 2025年第2期394-401,共8页
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el... During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases. 展开更多
关键词 acetylcholine release adenosine receptors axonal competition brain-derived neurotrophic factor calcium channels motor end-plate muscarinic acetylcholine receptors postnatal synapse elimination serine kinases tropomyosin-related kinase receptorB
下载PDF
Pan-TRK positive uterine sarcoma in immunohistochemistry without neurotrophic tyrosine receptor kinase gene fusions:A case report
7
作者 Seungmee Lee Yu-Ra Jeon +2 位作者 Changmin Shin Sun-Young Kwon Sojin Shin 《World Journal of Clinical Cases》 SCIE 2025年第2期39-49,共11页
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept... BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment. 展开更多
关键词 Uterine sarcoma Cervical sarcoma Neurotrophic tyrosine receptor kinase gene fusion Next generation sequencing Case report
下载PDF
Adult neurogenesis:a real hope or a delusion? 被引量:3
8
作者 Ghulam Hussain Rabia Akram +5 位作者 Haseeb Anwar Faiqa Sajid Tehreem Iman Hyung Soo Han Chand Raza Jose-Luis Gonzalez De Aguilar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期6-15,共10页
Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas... Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas of the brain:the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle,where new neurons are generated and then migrate to the olfactory bulb.Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells.Interestingly,recent years have seen tremendous progress in our understanding of adult brain neurogenesis,bridging the knowledge gap between embryonic and adult neurogenesis.Here,we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells.In this notion,we talk about the importance of intra cellular signaling molecules in mobilizing endogenous neural stem cell prolife ration.Based on the current understanding,we can declare that these molecules play a role in targeting neurogenesis in the mature brain.However,to achieve this goal,we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints,which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope. 展开更多
关键词 adult neurogenesis AGING brain-derived neurotrophic factor dentate gyrus HIPPOCAMPUS neural stem cells neurotrophic factors NOTCH oxidative stress stem cells subgranular zone
下载PDF
Are TrkB receptor agonists the right tool to fulfill the promises for a therapeutic value of the brain-derived neurotrophic factor? 被引量:5
9
作者 Marta Zagrebelsky Martin Korte 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期29-34,共6页
Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,an... Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance. 展开更多
关键词 Alzheimer's disease brain-derived neurotrophic factor DEPRESSION Parkinson's disease tropomyosin receptor kinase B receptor
下载PDF
Sorl1 knockout inhibits expression of brain-derived neurotrophic factor:involvement in the development of late-onset Alzheimer's disease 被引量:3
10
作者 Mingri Zhao Xun Chen +7 位作者 Jiangfeng Liu Yanjin Feng Chen Wang Ting Xu Wanxi Liu Xionghao Liu Mujun Liu Deren Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1602-1607,共6页
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ... Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis. 展开更多
关键词 brain-derived neurotrophic factor late-onset Alzheimer’s disease N-methyl-D-aspartate receptor sortilin-related receptor 1 SYNAPSE
下载PDF
Activation of cerebral Ras-related C3 botulinum toxin substrate(Rac) 1 promotes post-ischemic stroke functional recovery in aged mice 被引量:2
11
作者 Fan Bu Jia-Wei Min +5 位作者 Md Abdur Razzaque Ahmad El Hamamy Anthony Patrizz Li Qi Akihiko Urayama Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期881-886,共6页
Brain functional impairment after stroke is common;however,the molecular mechanisms of post-stroke recovery remain unclear.It is well-recognized that age is the most important independent predictor of poor outcomes af... Brain functional impairment after stroke is common;however,the molecular mechanisms of post-stroke recovery remain unclear.It is well-recognized that age is the most important independent predictor of poor outcomes after stroke as older patients show poorer functional outcomes following stroke.Mounting evidence suggests that axonal regeneration and angiogenesis,the major forms of brain plasticity responsible for post-stroke recovery,diminished with advanced age.Previous studies suggest that Ras-related C3 botulinum toxin substrate(Rac)1 enhances stroke recovery as activation of Rac1 improved behavior recovery in a young mice stroke model.Here,we investigated the role of Rac1 signaling in long-term functional recovery and brain plasticity in an aged(male,18 to 22 months old C57BL/6J)brain after ischemic stroke.We found that as mice aged,Rac1 expression declined in the brain.Delayed overexpression of Rac1,using lentivirus encoding Rac1 injected day 1 after ischemic stroke,promoted cognitive(assessed using novel object recognition test)and sensorimotor(assessed using adhesive removal tests)recovery on days 14–28.This was accompanied by the increase of neurite and proliferative endothelial cells in the periinfarct zone assessed by immunostaining.In a reverse approach,pharmacological inhibition of Rac1 by intraperitoneal injection of Rac1 inhibitor NSC23766 for 14 successive days after ischemic stroke worsened the outcome with the reduction of neurite and proliferative endothelial cells.Furthermore,Rac1 inhibition reduced the activation of p21-activated kinase 1,the protein level of brain-derived neurotrophic factor,and increased the protein level of glial fibrillary acidic protein in the ischemic brain on day 28 after stroke.Our work provided insight into the mechanisms behind the diminished plasticity after cerebral ischemia in aged brains and identified Rac1 as a potential therapeutic target for improving functional recovery in the older adults after stroke. 展开更多
关键词 aging angiogenesis brain-derived neurotrophic factor(BDNF) cerebral ischemia cognitive recovery NEURITE PAK1 RAC1 sensorimotor recovery
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings 被引量:2
12
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
The dorsal root ganglion as a target for neurorestoration in neuropathic pain 被引量:1
13
作者 Guillermo Estivill-Torrús Ana Belen Martínez-Padilla +2 位作者 Lourdes Sánchez-Salido Anne Baron-Van Evercooren Beatriz García-Díaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期296-301,共6页
Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.... Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain. 展开更多
关键词 CYTOKINES dorsal root ganglia genetic factors neuropathic pain neurotrophic factors pharmacologic and nonpharmacologic therapies satellite glial cells sensory neurons
下载PDF
General anesthetic agents induce neurotoxicity through astrocytes 被引量:1
14
作者 Yanchang Yang Tiantian Liu +8 位作者 Jun Li Dandan Yan Yuhan Hu Pin Wu Fuquan Fang Patrick M.McQuillan Wenxin Hang Jianhang Leng Zhiyong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1299-1307,共9页
Neuroscientists have recognized the importance of astrocytes in regulating neurological function and their influence on the release of glial transmitters.Few studies,however,have focused on the effects of general anes... Neuroscientists have recognized the importance of astrocytes in regulating neurological function and their influence on the release of glial transmitters.Few studies,however,have focused on the effects of general anesthetic agents on neuroglia or astrocytes.Astrocytes can also be an important target of general anesthetic agents as they exert not only sedative,analgesic,and amnesic effects but also mediate general anesthetic-induced neurotoxicity and postoperative cognitive dysfunction.Here,we analyzed recent advances in understanding the mechanism of general anesthetic agents on astrocytes,and found that exposure to general anesthetic agents will destroy the morphology and proliferation of astrocytes,in addition to acting on the receptors on their surface,which not only affect Ca^(2+)signaling,inhibit the release of brain-derived neurotrophic factor and lactate from astrocytes,but are even involved in the regulation of the pro-and anti-inflammatory processes of astrocytes.These would obviously affect the communication between astrocytes as well as between astrocytes and neighboring neurons,other neuroglia,and vascular cells.In this review,we summarize how general anesthetic agents act on neurons via astrocytes,and explore potential mechanisms of action of general anesthetic agents on the nervous system.We hope that this review will provide a new direction for mitigating the neurotoxicity of general anesthetic agents. 展开更多
关键词 ASTROCYTES brain-derived neurotrophic factor general anesthetic agents neuron NEUROTOXICITY N-methyl-D-aspartate receptor perioperative neurocognition Toll-like receptor γ-aminobutyric acid receptor
下载PDF
Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review 被引量:1
15
作者 Alexey N.Inyushkin Vitalii S.Poletaev +2 位作者 Elena M.Inyushkina Igor S.Kalberdin Andrey A.Inyushkin 《The Journal of Biomedical Research》 CAS CSCD 2024年第1期1-16,共16页
In mammals,the timing of physiological,biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms.To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus ... In mammals,the timing of physiological,biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms.To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm,environmental zeitgebers are used by the circadian system.This is done primarily by signals from the retina via the retinohypothalamic tract,but other cues like exercise,feeding,temperature,anxiety,and social events have also been shown to act as non-photic zeitgebers.The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise.Irisin is a product of cleavage and modification from its precursor membrane fibronectin typeⅢdomain-containing protein 5(FNDC5)in response to exercise.Apart from well-known peripheral effects,such as inducing the"browning"of white adipocytes,irisin can penetrate the blood-brain barrier and display the effects on the brain.Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions.In several brain areas,irisin induces the production of brain-derived neurotrophic factor(BDNF).In the master clock,a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested.However,the brain receptor for irisin remains unknown.In the current review,the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized. 展开更多
关键词 irisin brain-derived neurotrophic factor peroxisome proliferator-activated receptorγcoactivator circadian rhythm circadian system muscle-brain axis
下载PDF
Enhancement of endogenous midbrain neurogenesis by microneurotrophin BNN-20 after neural progenitor grafting in a mouse model of nigral degeneration
16
作者 Theodora Mourtzi Nasia Antoniou +10 位作者 Christina Dimitriou Panagiotis Gkaravelas Georgia Athanasopoulou Panagiota Nti Kostantzo Olga Stathi Efthymia Theodorou Maria Anesti Rebecca Matsas Fevronia Angelatou Georgia Kouroupi Ilias Kazanis 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1318-1324,共7页
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the“weaver”mouse,a model of progressive nigrostriatal degeneration.Here,we extended our... We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the“weaver”mouse,a model of progressive nigrostriatal degeneration.Here,we extended our investigation in two clinically-relevant ways.First,we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors.Second,we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice,at late stages of degeneration.We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells,marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors.In agreement,we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice.However,the graft strongly induced an endogenous neurogenic response throughout the midbrain,which was significantly enhanced by the administration of microneurotrophin BNN-20.Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20.Interestingly,the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect. 展开更多
关键词 adult neurogenesis BNN-20 brain-derived neurotrophic factor cell replacement induced pluripotent stem cells(iPSCs) neurotrophic factors Parkinson's disease substantia
下载PDF
Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy
17
作者 Jie Wu Yulei Huang +10 位作者 Hanrui Yu Kaixiu Li Shifeng Zhang Guoqing Qiao Xiao Liu Hongmei Duan Yifei Huang Kwok-Fai So Zhaoyang Yang Xiaoguang Li Liqiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期680-686,共7页
Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic ker... Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective. 展开更多
关键词 chitosan corneal reinnervation murine nerve growth factor neurotrophic keratopathy thermosensitive hydrogel
下载PDF
Hydrogel dressings on neurotrophic keratitis in an experimental animal model
18
作者 Hua-Qin Xia Xiao-Dan Jiang +2 位作者 Yi-Fan Song Xue-Min Li Yan-Jie Tian 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1396-1402,共7页
AIM:To investigate the therapeutic effects of hydrogel dressings on neurotrophic keratitis in rats.METHODS:Male Wistar rats,aged 42–56d,were randomly divided into control,experimental,and treatment groups,each consis... AIM:To investigate the therapeutic effects of hydrogel dressings on neurotrophic keratitis in rats.METHODS:Male Wistar rats,aged 42–56d,were randomly divided into control,experimental,and treatment groups,each consisting of five rats.The experimental and treatment groups underwent neurotrophic keratitis modeling in both eyes.After successful modeling,biomedical hydrogels formed with polyvinyl alcohol and polyvinyl pyrrolidone were used in treatment group for 7d.Ocular irritation response and keratitis index scores,Schirmer’s test,tear film break-up time(BUT),sodium fluorescein staining,and hematoxylin and eosin(HE)staining were used to evaluate the effectiveness of the treatment.RESULTS:The neurotrophic keratitis model was successfully established in rats with severe ophthalmic nerve injury,characterized by keratitis,ocular irritation,reduced tear secretion measured by decreased BUT and Schirmer test values,corneal epithelial loss,and disorganized collagen fibers in the stromal layer.Following treatment with hydrogel dressings,significant improvements were observed in keratitis scores and ocular irritation symptoms in model eyes.Although the recovery of tear secretion,as measured by the Schirmer’s test,did not show statistical differences,BUT was significantly prolonged.Fluorescein staining confirmed a reduction in the extent of corneal epithelial loss after treatment.HE staining revealed the restoration of the structural disorder in both the epithelial and stromal layers to a certain extent.CONCLUSION:Hydrogel dressing reduces ocular surface irritation,improves tear film stability,and promotes the repair and restoration of damaged epithelial cells by maintaining a moist and clean environment on the ocular surface in the rat model. 展开更多
关键词 neurotrophic keratitis HYDROGEL corneal epithelial cells RAT
下载PDF
LncRNA NPTN-IT1-201 Ameliorates Depressive-like Behavior by Targeting miR-142-5p and Regulating Inflammation and Apoptosis via BDNF
19
作者 Jun HE Peng XIE +6 位作者 Xiao-qiong AN Dong-fen GUO Bin BI Gang WU Wen-feng YU Zhen-kui REN Li ZUO 《Current Medical Science》 SCIE CAS 2024年第5期971-986,共16页
Objective Long noncoding RNAs(lncRNAs)and microRNAs(miRNAs)are widely expressed in the brain and are associated with the development of neurological and neurodegenerative diseases.However,their roles and molecular mec... Objective Long noncoding RNAs(lncRNAs)and microRNAs(miRNAs)are widely expressed in the brain and are associated with the development of neurological and neurodegenerative diseases.However,their roles and molecular mechanisms in major depressive disorder(MDD)remain largely unknown.This study aimed to identify lncRNAs and miRNAs involved in the development of MDD and elucidate their molecular mechanisms.Methods Transcriptome and bioinformatic analyses were performed to identify miRNAs and lncRNAs related to MDD.C57 mice were subjected to chronic unpredictable mild stress(CUMS)to establish a depression model.Lentiviruses containing either lncRNA NPTN-IT1-201 or miR-142-5p were microinjected into the hippocampal region of these mice.Behavioral tests including the sucrose preference test(SPT),tail suspension test(TST),and forced swim test(FST)were conducted to evaluate depressive-like behaviors.Results The results revealed that overexpression of lncRNA NPTN-IT1-201 or inhibition of miR-142-5p significantly ameliorated depressive-like behaviors in CUMS-treated mice.Dual-luciferase reporter assays confirmed interactions between miR-142-5p with both brain-derived neurotrophic factor(BDNF)and NPTN-IT1-201.ELISA analysis revealed significant alterations in relevant biomarkers in the blood samples of MDD patients compared to healthy controls.Histological analyses,including HE and Nissl staining,showed marked structural changes in brain tissues following CUMS treatment,which were partially reversed by lncRNA NPTN-IT1-201 overexpression or miR-142-5p inhibition.Immunofluorescence imaging demonstrated significant differences in the levels of BAX,Bcl2,p65,Iba1 among different treatment groups.TUNEL assays confirmed reduced apoptosis in brain tissues following these interventions.Western blotting showed the significant differences in BDNF,BAX,and Bcl2 protein levels among different treatment groups.Conclusion NPTN-IT1-201 regulates inflammation and apoptosis in MDD by targeting BDNF via miR-142-5p,making it a potential therapeutic target for MDD. 展开更多
关键词 depressive-like behavior chronic unpredictable mild stress long noncoding RNA microRNA brain-derived neurotrophic factor
下载PDF
A core scientific problem in the treatment of central nervous system diseases:newborn neurons
20
作者 Peng Hao Zhaoyang Yang +1 位作者 Kwok-Fai So Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2588-2601,共14页
It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons.Yet over recent decades,numerous s... It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons.Yet over recent decades,numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system,including humans'.This has challenged the long-held scientific consensus that the number of adult neurons remains constant,and that new central nervous system neurons cannot be created or renewed.Herein,we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury,and describe novel treatment strategies that to rget endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury.Central nervous system injury frequently results in alterations of endogenous neurogenesis,encompassing the activation,proliferation,ectopic migration,diffe rentiation,and functional integration of endogenous neural stem cells.Because of the unfavorable local microenvironment,most activated neural stem cells diffe rentiate into glial cells rather than neurons.Consequently,the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function.Scientists have attempted to enhance endogenous neurogenesis using various strategies,including using neurotrophic factors,bioactive materials,and cell reprogramming techniques.Used alone or in combination,these therapeutic strategies can promote targeted migration of neural stem cells to an injured area,ensure their survival and diffe rentiation into mature functional neurons,and facilitate their integration into the neural circuit.Thus can integration re plenish lost neurons after central nervous system injury,by improving the local microenvironment.By regulating each phase of endogenous neurogenesis,endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons.This offers a novel approach for treating central nervous system injury. 展开更多
关键词 bioactive materials brain trauma endogenous neurogenesis hippocampal dentate gyrus neural stem cells neurotrophic factors newborn neurons spinal cord injury stroke subventricular zone
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部