文章介绍了一种电动汽车用永磁同步电机的设计方法,其在满足电机牵引特性、热设计和体积限制要求的前提下能实现电机在整车NEDC(new European drive cycle)路谱工况下的效率最优;通过对乘用车NEDC路谱工况下能量消耗点的分布进行分析,...文章介绍了一种电动汽车用永磁同步电机的设计方法,其在满足电机牵引特性、热设计和体积限制要求的前提下能实现电机在整车NEDC(new European drive cycle)路谱工况下的效率最优;通过对乘用车NEDC路谱工况下能量消耗点的分布进行分析,引入能量效率中心点概念,实现在NEDC路谱工况下对电机能耗和效率的快速评估,为电机效率的定向优化设计提供依据;结合电机铜耗和铁耗分配优化技术,分别对基于能量中心点的效率优化方案和传统的额定点效率最优方案进行对比并通过试验,验证了该设计方案的有效性和实用性。展开更多
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele...This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.展开更多
为了自动化测试燃料电池的电性能和效率,基于LabVIEW平台,应用硬件在环(HIL)技术研制了一套燃料电池仿真测试系统.首先根据测试要求设计和搭建了硬件系统;然后在LabVIEW中进行图形化编程,通过系统集成实现了实时信号处理,完成了HIL仿真...为了自动化测试燃料电池的电性能和效率,基于LabVIEW平台,应用硬件在环(HIL)技术研制了一套燃料电池仿真测试系统.首先根据测试要求设计和搭建了硬件系统;然后在LabVIEW中进行图形化编程,通过系统集成实现了实时信号处理,完成了HIL仿真测试;并将NEDC(new European driving cycle)测试应用于本测试系统.结果显示该系统能够实现不同功率下的仿真测试,并具有良好的操作性和安全性,为燃料电池的开发提供了一种测试手段.展开更多
针对某款纯电动轿车进行整车阻力试验分析与研究,在整车阻力分解阶段提出在原有电机控制策略的基础上进行"电机零转矩指令下偏正向转矩标定优化"的控制策略,并对体现优化策略的实车进行阻力复测研究。研究结果表明,优化后的...针对某款纯电动轿车进行整车阻力试验分析与研究,在整车阻力分解阶段提出在原有电机控制策略的基础上进行"电机零转矩指令下偏正向转矩标定优化"的控制策略,并对体现优化策略的实车进行阻力复测研究。研究结果表明,优化后的策略对降低整车行驶阻力有明显的改善,整车道路行驶阻力平均值降低33 N。运用此策略在进行道路行驶阻力测试时满足相应的国标测试规范,对新标欧洲循环测试(New European Driving Cycle,NEDC)下的续驶里程提升也有显著贡献。展开更多
文章以电动汽车制动能量回收系统为研究对象,针对某双轴前驱单电机的电动汽车,设计了基于ECE法规和I线制动力分配的制动分配策略。在Simulink中建立了控制策略的仿真模型,将其嵌入到AVL Cruise软件中,选用NEDC(new European driving cyc...文章以电动汽车制动能量回收系统为研究对象,针对某双轴前驱单电机的电动汽车,设计了基于ECE法规和I线制动力分配的制动分配策略。在Simulink中建立了控制策略的仿真模型,将其嵌入到AVL Cruise软件中,选用NEDC(new European driving cycle)工况,对控制策略进行联合仿真,分析能量回收情况。在AVL转毂试验台上设计并完成了实车台架试验,验证了仿真结果的正确性。展开更多
Setting engine emission targets to meet diesel car requirements is particularly important in engine performance development phase. Many researches are focused on associating vehicle performance with engine targets, bu...Setting engine emission targets to meet diesel car requirements is particularly important in engine performance development phase. Many researches are focused on associating vehicle performance with engine targets, but most work is done by testing, which is time and cost consuming, furthermore, the relationship of vehicle and engine will change when either engine or vehicle changes. A GT-Drive model to simulate New European Driving Cycle (NEDC) for passenger car is developed and calibrated by testing data, model precision is controlled within 5%. Time distribution of engine operating conditions when car running NEDC cycle has been analyzed, 10 critical major engine operating points are summarized according to running time proportion. Emission of NOx and smoke control regions containing these 10 points for target engine are set. Vehicle emissions are simulated and evaluated during engine development after engine performance test data are got, and engine combustion system layout and calibration are adjusted until vehicle targets are met. Vehicle is tested in chassis dynamometer finally, the testing results show a good agreement with the simulated results with an error of less than 5%, which proves that the emission value exchange of vehicle and engine is reliable. Performance target decomposition method for passenger car diesel presented can greatly shorten the development cycle and save costs.展开更多
To enhance the fuel economy of a vehicle powered by a gasoline engine under road conditions,an energy flow test of a vehicle was performed experimentally under the New European Driving Cycle of cold start.The energy d...To enhance the fuel economy of a vehicle powered by a gasoline engine under road conditions,an energy flow test of a vehicle was performed experimentally under the New European Driving Cycle of cold start.The energy distributions and related influencing factors were analyzed using the test data.Results show that the effective power and thermal efficiency are mainly affected by the engine load except in the early stage of the New European Driving Cycle.Because of the retarded CA50 and longer CA10-90,the effective thermal efficiency is lower in the early phase of driving conditions.Initially,the heat transfer loss mainly comprises the loss of the heating,ventilation,and air conditioning system.The radiator then plays the major role,with its percentage affected by the engine load and decreasing under the extra-urban driving cycle.The exhaust gas loss is decided by the temperature and flow rate of the exhaust gas,while its percentage is mainly affected by the temperature of the exhaust gas.In the early phase of driving conditions,the retarded spark advance angle leads to a higher temperature of the exhaust gas and a greater exhaust gas loss.The pumping loss and its percentage are mainly determined by the engine speed under the urban driving cycle,and both decrease under the extra-urban driving cycle except at maximum vehicle speed.展开更多
文摘文章介绍了一种电动汽车用永磁同步电机的设计方法,其在满足电机牵引特性、热设计和体积限制要求的前提下能实现电机在整车NEDC(new European drive cycle)路谱工况下的效率最优;通过对乘用车NEDC路谱工况下能量消耗点的分布进行分析,引入能量效率中心点概念,实现在NEDC路谱工况下对电机能耗和效率的快速评估,为电机效率的定向优化设计提供依据;结合电机铜耗和铁耗分配优化技术,分别对基于能量中心点的效率优化方案和传统的额定点效率最优方案进行对比并通过试验,验证了该设计方案的有效性和实用性。
文摘This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.
文摘为了自动化测试燃料电池的电性能和效率,基于LabVIEW平台,应用硬件在环(HIL)技术研制了一套燃料电池仿真测试系统.首先根据测试要求设计和搭建了硬件系统;然后在LabVIEW中进行图形化编程,通过系统集成实现了实时信号处理,完成了HIL仿真测试;并将NEDC(new European driving cycle)测试应用于本测试系统.结果显示该系统能够实现不同功率下的仿真测试,并具有良好的操作性和安全性,为燃料电池的开发提供了一种测试手段.
文摘针对某款纯电动轿车进行整车阻力试验分析与研究,在整车阻力分解阶段提出在原有电机控制策略的基础上进行"电机零转矩指令下偏正向转矩标定优化"的控制策略,并对体现优化策略的实车进行阻力复测研究。研究结果表明,优化后的策略对降低整车行驶阻力有明显的改善,整车道路行驶阻力平均值降低33 N。运用此策略在进行道路行驶阻力测试时满足相应的国标测试规范,对新标欧洲循环测试(New European Driving Cycle,NEDC)下的续驶里程提升也有显著贡献。
文摘文章以电动汽车制动能量回收系统为研究对象,针对某双轴前驱单电机的电动汽车,设计了基于ECE法规和I线制动力分配的制动分配策略。在Simulink中建立了控制策略的仿真模型,将其嵌入到AVL Cruise软件中,选用NEDC(new European driving cycle)工况,对控制策略进行联合仿真,分析能量回收情况。在AVL转毂试验台上设计并完成了实车台架试验,验证了仿真结果的正确性。
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA11A115)
文摘Setting engine emission targets to meet diesel car requirements is particularly important in engine performance development phase. Many researches are focused on associating vehicle performance with engine targets, but most work is done by testing, which is time and cost consuming, furthermore, the relationship of vehicle and engine will change when either engine or vehicle changes. A GT-Drive model to simulate New European Driving Cycle (NEDC) for passenger car is developed and calibrated by testing data, model precision is controlled within 5%. Time distribution of engine operating conditions when car running NEDC cycle has been analyzed, 10 critical major engine operating points are summarized according to running time proportion. Emission of NOx and smoke control regions containing these 10 points for target engine are set. Vehicle emissions are simulated and evaluated during engine development after engine performance test data are got, and engine combustion system layout and calibration are adjusted until vehicle targets are met. Vehicle is tested in chassis dynamometer finally, the testing results show a good agreement with the simulated results with an error of less than 5%, which proves that the emission value exchange of vehicle and engine is reliable. Performance target decomposition method for passenger car diesel presented can greatly shorten the development cycle and save costs.
基金This research work is jointly sponsored by the National Natural Science Foundation of China(No.51776061)Young Elite Scientists Sponsorship Program of the China Association for Science and Technology(No.2017QNRC001)Fundamental Research Funds for the Central Universities.
文摘To enhance the fuel economy of a vehicle powered by a gasoline engine under road conditions,an energy flow test of a vehicle was performed experimentally under the New European Driving Cycle of cold start.The energy distributions and related influencing factors were analyzed using the test data.Results show that the effective power and thermal efficiency are mainly affected by the engine load except in the early stage of the New European Driving Cycle.Because of the retarded CA50 and longer CA10-90,the effective thermal efficiency is lower in the early phase of driving conditions.Initially,the heat transfer loss mainly comprises the loss of the heating,ventilation,and air conditioning system.The radiator then plays the major role,with its percentage affected by the engine load and decreasing under the extra-urban driving cycle.The exhaust gas loss is decided by the temperature and flow rate of the exhaust gas,while its percentage is mainly affected by the temperature of the exhaust gas.In the early phase of driving conditions,the retarded spark advance angle leads to a higher temperature of the exhaust gas and a greater exhaust gas loss.The pumping loss and its percentage are mainly determined by the engine speed under the urban driving cycle,and both decrease under the extra-urban driving cycle except at maximum vehicle speed.