People living on the high plateaus of the world have long fascinated biological anthropologists and geneticists because they live in "thin air" and epitomize an extreme of human biological adaptation.
High-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution(AR)in precise positioning.However,traditional real-time precise positioning frameworks(i.e.,NR...High-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution(AR)in precise positioning.However,traditional real-time precise positioning frameworks(i.e.,NRTK and PPP-RTK)depend on spatial low-resolution atmospheric delay correction through the expensive and sparsely distributed CORS network.This results in limited public appeal.With the mass production of autonomous driving vehicles,more cost-effective and widespread data sources can be explored to create spatial high-resolution atmospheric maps.In this study,we propose a new GNSS positioning framework that relies on dual base stations,massive vehicle GNSS data,and crowdsourced atmospheric delay correction maps(CAM).The map is easily produced and updated by vehicles equipped with GNSS receivers in a crowd-sourced way.Specifically,the map consists of between-station single-differenced ionospheric and tropospheric delays.We introduce the whole framework of CAM initialization for individual vehicles,on-cloud CAM maintenance,and CAM-augmented user-end positioning.The map data are collected and preprocessed in vehicles.Then,the crowdsourced data are uploaded to a cloud server.The massive data from multiple vehicles are merged in the cloud to update the CAM in time.Finally,the CAM will augment the user positioning performance.This framework forms a beneficial cycle where the CAM’s spatial resolution and the user positioning performance mutually improve each other.We validate the performance of the proposed framework in real-world experiments and the applied potency at different spatial scales.We highlight that this framework is a reliable and practical positioning solution that meets the requirements of ubiquitous high-precision positioning.展开更多
Comrade Xi Jinping points out in the Report to the 19th National Congress of the Communist Party of China(CPC or the Party)that after a long period of efforts,socialism with Chinese characteristics has entered a new e...Comrade Xi Jinping points out in the Report to the 19th National Congress of the Communist Party of China(CPC or the Party)that after a long period of efforts,socialism with Chinese characteristics has entered a new era.,which is a new historical position for China to develop.Scientific understanding展开更多
A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primit...A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.展开更多
文摘People living on the high plateaus of the world have long fascinated biological anthropologists and geneticists because they live in "thin air" and epitomize an extreme of human biological adaptation.
基金funded by the National Key R&D Program of China(NO.2022YFB3903903)the National Natural Science Foundation of China(NO.41974008,NO.42074045).
文摘High-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution(AR)in precise positioning.However,traditional real-time precise positioning frameworks(i.e.,NRTK and PPP-RTK)depend on spatial low-resolution atmospheric delay correction through the expensive and sparsely distributed CORS network.This results in limited public appeal.With the mass production of autonomous driving vehicles,more cost-effective and widespread data sources can be explored to create spatial high-resolution atmospheric maps.In this study,we propose a new GNSS positioning framework that relies on dual base stations,massive vehicle GNSS data,and crowdsourced atmospheric delay correction maps(CAM).The map is easily produced and updated by vehicles equipped with GNSS receivers in a crowd-sourced way.Specifically,the map consists of between-station single-differenced ionospheric and tropospheric delays.We introduce the whole framework of CAM initialization for individual vehicles,on-cloud CAM maintenance,and CAM-augmented user-end positioning.The map data are collected and preprocessed in vehicles.Then,the crowdsourced data are uploaded to a cloud server.The massive data from multiple vehicles are merged in the cloud to update the CAM in time.Finally,the CAM will augment the user positioning performance.This framework forms a beneficial cycle where the CAM’s spatial resolution and the user positioning performance mutually improve each other.We validate the performance of the proposed framework in real-world experiments and the applied potency at different spatial scales.We highlight that this framework is a reliable and practical positioning solution that meets the requirements of ubiquitous high-precision positioning.
文摘Comrade Xi Jinping points out in the Report to the 19th National Congress of the Communist Party of China(CPC or the Party)that after a long period of efforts,socialism with Chinese characteristics has entered a new era.,which is a new historical position for China to develop.Scientific understanding
文摘A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.