Ankylosing spondylitis(AS)has a very high disability rate.How to effectively inhibit the formation of new bones has become a difficult point in clinical treatment.In recent years,research has shown that different trea...Ankylosing spondylitis(AS)has a very high disability rate.How to effectively inhibit the formation of new bones has become a difficult point in clinical treatment.In recent years,research has shown that different treatment plans can have an impact on inhibiting new bone formation.In this paper,the different effects of new bone formation in the treatment of AS with traditional Chinese and Western medicine are systematically listed.展开更多
Daily 20-mg and once-weekly 56.5-mg teriparatide(parathyroid hormone 1–34) treatment regimens increase bone mineral density(BMD) and prevent fractures, but changes in bone turnover markers differ between the two ...Daily 20-mg and once-weekly 56.5-mg teriparatide(parathyroid hormone 1–34) treatment regimens increase bone mineral density(BMD) and prevent fractures, but changes in bone turnover markers differ between the two regimens. The aim of the present study was to explain changes in bone turnover markers using once-weekly teriparatide with a simulation model. Temporary increases in bone formation markers and subsequent decreases were observed during once-weekly teriparatide treatment for 72 weeks. These observations support the hypothesis that repeated weekly teriparatide administration stimulates bone remodeling, replacing old bone with new bone and leading to a reduction in the active remodeling surface. A simulation model was developed based on the iterative remodeling cycle that occurs on residual old bone. An increase in bone formation and a subsequent decrease were observed in the preliminary simulation. For each fitted time point, the predicted value was compared to the absolute values of the bone formation and resorption markers and lumbar BMD. The simulation model strongly matched actual changes in bone turnover markers and BMD. This simulation model indicates increased bone formation marker levels in the early stage and a subsequent decrease. It is therefore concluded that remodeling-based bone formation persisted during the entire treatment period with once-weekly teriparatide.展开更多
To study the new bone formation in the bone defect area after implantation, the tetracycline tracing method was used. The results show that new bone formed in 1 month, and the formation rate of new bone was very high ...To study the new bone formation in the bone defect area after implantation, the tetracycline tracing method was used. The results show that new bone formed in 1 month, and the formation rate of new bone was very high (8.164μm/day),considerably faster than that of control groups (3.219μm/day).The new bone grew up quickly and β-TCP particles were surrounded by double fluorescence bands which became more obvious. The new bone formation rate was maximal at 2 months, and then gradually reduced. The rate was steady at 4 months, and then reduced to resembling as the normal physiologic metabolism of bone, which indicated the implanted materials were completely replaced by bone. Calcium phosphate materials had the ability of osteoconduction.展开更多
Objective: To assess the effect of puerarin, a natural fiavonoid found in Chinese Pueraria Lobata (Wild.) Ohwi, on promotion of new bone formation. Methods: Osteoblasts isolated from calvarial of newborn rats were...Objective: To assess the effect of puerarin, a natural fiavonoid found in Chinese Pueraria Lobata (Wild.) Ohwi, on promotion of new bone formation. Methods: Osteoblasts isolated from calvarial of newborn rats were cultured in vitro in the presence of puerarin at various concentrations. The viability of osteoblasts and alkaline phosphotase activity and mineral node formation were determined. In addition, osteoblasts seeded in the β -tricaclium phosphate scalfolds as bone substitute were implanted in rat dorsal muscles. Half of the recipient rats received intramuscular injection of pueradn at 10 mg/(kg.d) for 7 days. Osteogenesis was analyzed by examining the histology after 4 weeks of implantation. Results: The viability of osteoblasts treated with puerarin at either 40 or 80 umol/L was significantly higher than that of the control (P〈0.05 and P〈0.01, respectively). Alkaline phosphatase and mineral modules were significantly increased in osteoblasts cultured with puerarin at 40 or 80 mol/L when compared with that of the untreated cells. The pueradn-treated rats had a higher rate of bone formation in the osteoblast implants than the control rats (6.35% vs. 1.32%, respectively, P〈0.05). Conclusion: Puerarin was able to affect osteoblast proliferation and differentiation, and promote the new bone formation in osteoblast implants.展开更多
基金Supported by the National Natural Science Foundation of China(82205105).
文摘Ankylosing spondylitis(AS)has a very high disability rate.How to effectively inhibit the formation of new bones has become a difficult point in clinical treatment.In recent years,research has shown that different treatment plans can have an impact on inhibiting new bone formation.In this paper,the different effects of new bone formation in the treatment of AS with traditional Chinese and Western medicine are systematically listed.
文摘Daily 20-mg and once-weekly 56.5-mg teriparatide(parathyroid hormone 1–34) treatment regimens increase bone mineral density(BMD) and prevent fractures, but changes in bone turnover markers differ between the two regimens. The aim of the present study was to explain changes in bone turnover markers using once-weekly teriparatide with a simulation model. Temporary increases in bone formation markers and subsequent decreases were observed during once-weekly teriparatide treatment for 72 weeks. These observations support the hypothesis that repeated weekly teriparatide administration stimulates bone remodeling, replacing old bone with new bone and leading to a reduction in the active remodeling surface. A simulation model was developed based on the iterative remodeling cycle that occurs on residual old bone. An increase in bone formation and a subsequent decrease were observed in the preliminary simulation. For each fitted time point, the predicted value was compared to the absolute values of the bone formation and resorption markers and lumbar BMD. The simulation model strongly matched actual changes in bone turnover markers and BMD. This simulation model indicates increased bone formation marker levels in the early stage and a subsequent decrease. It is therefore concluded that remodeling-based bone formation persisted during the entire treatment period with once-weekly teriparatide.
文摘To study the new bone formation in the bone defect area after implantation, the tetracycline tracing method was used. The results show that new bone formed in 1 month, and the formation rate of new bone was very high (8.164μm/day),considerably faster than that of control groups (3.219μm/day).The new bone grew up quickly and β-TCP particles were surrounded by double fluorescence bands which became more obvious. The new bone formation rate was maximal at 2 months, and then gradually reduced. The rate was steady at 4 months, and then reduced to resembling as the normal physiologic metabolism of bone, which indicated the implanted materials were completely replaced by bone. Calcium phosphate materials had the ability of osteoconduction.
基金Supported by the Doctoral Fund of Ministry of Education of China(No.20070698083)
文摘Objective: To assess the effect of puerarin, a natural fiavonoid found in Chinese Pueraria Lobata (Wild.) Ohwi, on promotion of new bone formation. Methods: Osteoblasts isolated from calvarial of newborn rats were cultured in vitro in the presence of puerarin at various concentrations. The viability of osteoblasts and alkaline phosphotase activity and mineral node formation were determined. In addition, osteoblasts seeded in the β -tricaclium phosphate scalfolds as bone substitute were implanted in rat dorsal muscles. Half of the recipient rats received intramuscular injection of pueradn at 10 mg/(kg.d) for 7 days. Osteogenesis was analyzed by examining the histology after 4 weeks of implantation. Results: The viability of osteoblasts treated with puerarin at either 40 or 80 umol/L was significantly higher than that of the control (P〈0.05 and P〈0.01, respectively). Alkaline phosphatase and mineral modules were significantly increased in osteoblasts cultured with puerarin at 40 or 80 mol/L when compared with that of the untreated cells. The pueradn-treated rats had a higher rate of bone formation in the osteoblast implants than the control rats (6.35% vs. 1.32%, respectively, P〈0.05). Conclusion: Puerarin was able to affect osteoblast proliferation and differentiation, and promote the new bone formation in osteoblast implants.