With the rapid development of the city, it is necessar</span><span style="font-family:Verdana;">y to obtain geological information within 500 meters. Electrical prospecting is not only low cost a...With the rapid development of the city, it is necessar</span><span style="font-family:Verdana;">y to obtain geological information within 500 meters. Electrical prospecting is not only low cost and simple operation, but also solves the problem of insufficient drilling density in </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">survey</span><span style="font-family:Verdana;">. However, due to the dense urban buildings and strong electromagnetic interference, it is difficult for traditional electrical instruments to obtain effective data</span><span style="font-family:Verdana;">.</span><span style="font-family:""> </span><span style="font-family:Verdana;">An </span><span style="font-family:Verdana;">anti-interference electrical method instrument is designed.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">In the application test of Tongzhou</span><span style="color:black;font-family:Verdana;"> core area in Beijing, the resistivity sounding data collected by </span></span><span style="font-family:"color:black;"><span style="font-family:Verdana;">anti-interference</span><span style="font-family:Verdana;"> electrical method </span><span style="font-family:Verdana;">instrument</span><span style="font-family:Verdana;"> is stable and reliable;inversion results of sounding are basically consistent with borehole data;</span><span style="font-family:Verdana;">the known Zhangjiawan fault and Yaoxinzhuang fault are obvious;basement karst collapse area inferred is basically coincident with the historical collapse area. It is proved that the anti-interference electrical </span><span style="font-family:Verdana;">method</span><span style="font-family:Verdana;"> instrument is effective and can be applied to the geological survey of underground space in other cities.展开更多
文摘With the rapid development of the city, it is necessar</span><span style="font-family:Verdana;">y to obtain geological information within 500 meters. Electrical prospecting is not only low cost and simple operation, but also solves the problem of insufficient drilling density in </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">survey</span><span style="font-family:Verdana;">. However, due to the dense urban buildings and strong electromagnetic interference, it is difficult for traditional electrical instruments to obtain effective data</span><span style="font-family:Verdana;">.</span><span style="font-family:""> </span><span style="font-family:Verdana;">An </span><span style="font-family:Verdana;">anti-interference electrical method instrument is designed.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">In the application test of Tongzhou</span><span style="color:black;font-family:Verdana;"> core area in Beijing, the resistivity sounding data collected by </span></span><span style="font-family:"color:black;"><span style="font-family:Verdana;">anti-interference</span><span style="font-family:Verdana;"> electrical method </span><span style="font-family:Verdana;">instrument</span><span style="font-family:Verdana;"> is stable and reliable;inversion results of sounding are basically consistent with borehole data;</span><span style="font-family:Verdana;">the known Zhangjiawan fault and Yaoxinzhuang fault are obvious;basement karst collapse area inferred is basically coincident with the historical collapse area. It is proved that the anti-interference electrical </span><span style="font-family:Verdana;">method</span><span style="font-family:Verdana;"> instrument is effective and can be applied to the geological survey of underground space in other cities.