Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisf...Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter-ation algorithm is also considered, which converges to the unique solution of the likelihoodequation. Moreover, we extend these results to a random case.展开更多
基金the National Natural Science Foundation of China
文摘Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter-ation algorithm is also considered, which converges to the unique solution of the likelihoodequation. Moreover, we extend these results to a random case.