We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equ...We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equation in relativistic quantum mechanics can be verified using the reformulating framework. We also discuss possible hidden dynamics underlying the concept of quantum jumps in quantum mechanics as outlined in Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger’s article: ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dynamics of quantum jumps are also determined by the Coulomb interaction between charged particles.展开更多
Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Us...Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Using this methodology, which evidences the analogy between orbital systems and autonomous second-order electrical systems, a new theory is presented in this article, in which it is demonstrated that Newton’s gravitational fields can also be treated as a composition of Hook’s elastic type fields, using the superposition principle. In fact, there is an identity between the equations of both laws. Furthermore, an energy analysis is conducted, and new concepts of power are introduced, which can help a better understanding of the physical mechanism of these quantities on both mechanical and electrical systems. The author believes that, as a practical consequence, elastic type gravitational fields can be artificially produced with modern engineering technologies, leading to possible satellites navigation techniques, with less dependency of external sources of energy and, even, new forms of energy sources for general purposes. This reinterpretation of orbital mechanics may also be complementary to conventional study, with implications for other theories such as relativistic, quantum, string theory and others.展开更多
文摘We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equation in relativistic quantum mechanics can be verified using the reformulating framework. We also discuss possible hidden dynamics underlying the concept of quantum jumps in quantum mechanics as outlined in Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger’s article: ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dynamics of quantum jumps are also determined by the Coulomb interaction between charged particles.
文摘Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Using this methodology, which evidences the analogy between orbital systems and autonomous second-order electrical systems, a new theory is presented in this article, in which it is demonstrated that Newton’s gravitational fields can also be treated as a composition of Hook’s elastic type fields, using the superposition principle. In fact, there is an identity between the equations of both laws. Furthermore, an energy analysis is conducted, and new concepts of power are introduced, which can help a better understanding of the physical mechanism of these quantities on both mechanical and electrical systems. The author believes that, as a practical consequence, elastic type gravitational fields can be artificially produced with modern engineering technologies, leading to possible satellites navigation techniques, with less dependency of external sources of energy and, even, new forms of energy sources for general purposes. This reinterpretation of orbital mechanics may also be complementary to conventional study, with implications for other theories such as relativistic, quantum, string theory and others.