In this paper, a generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) iteration method for a non-Hermitian positive-definite matrix is studied, which covers standard Hermitian and skew-Hermitian...In this paper, a generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) iteration method for a non-Hermitian positive-definite matrix is studied, which covers standard Hermitian and skew-Hermitian splitting (HSS) iteration and also many existing variants. Theoretical analysis gives an upper bound for the spectral radius of the iteration matrix. From practical point of view, we have analyzed and implemented inexact generalized preconditioned Hermitian and skew-Hermitian splitting (IGPHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical experiments from three-dimensional convection-diffusion iterations are efficient and competitive with equation show that the GPHSS and IGPHSS standard HSS iteration and AHSS iteration.展开更多
Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS (PPHSS) method for solving saddle point problems. In this short note, we further discuss the PPHSS method for solving singula...Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS (PPHSS) method for solving saddle point problems. In this short note, we further discuss the PPHSS method for solving singular saddle point problems. We prove the semi-convergence of the PPHSS method under some conditions. Numerical experiments are given to illustrate the efficiency of the method with appropriate parameters.展开更多
In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system...In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.展开更多
An effective algorithm for solving large saddle-point linear systems, presented by Krukier et al., is applied to the constrained optimization problems. This method is a modification of skew-Hermitian triangular splitt...An effective algorithm for solving large saddle-point linear systems, presented by Krukier et al., is applied to the constrained optimization problems. This method is a modification of skew-Hermitian triangular splitting iteration methods. We consider the saddle-point linear systems with singular or semidefinite (1, 1) blocks. Moreover, this method is applied to precondition the GMRES. Numerical results have confirmed the effectiveness of the method and showed that the new method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse saddle-point linear systems.展开更多
文摘In this paper, a generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) iteration method for a non-Hermitian positive-definite matrix is studied, which covers standard Hermitian and skew-Hermitian splitting (HSS) iteration and also many existing variants. Theoretical analysis gives an upper bound for the spectral radius of the iteration matrix. From practical point of view, we have analyzed and implemented inexact generalized preconditioned Hermitian and skew-Hermitian splitting (IGPHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical experiments from three-dimensional convection-diffusion iterations are efficient and competitive with equation show that the GPHSS and IGPHSS standard HSS iteration and AHSS iteration.
文摘Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS (PPHSS) method for solving saddle point problems. In this short note, we further discuss the PPHSS method for solving singular saddle point problems. We prove the semi-convergence of the PPHSS method under some conditions. Numerical experiments are given to illustrate the efficiency of the method with appropriate parameters.
文摘In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.
文摘An effective algorithm for solving large saddle-point linear systems, presented by Krukier et al., is applied to the constrained optimization problems. This method is a modification of skew-Hermitian triangular splitting iteration methods. We consider the saddle-point linear systems with singular or semidefinite (1, 1) blocks. Moreover, this method is applied to precondition the GMRES. Numerical results have confirmed the effectiveness of the method and showed that the new method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse saddle-point linear systems.