In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller desig...In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.展开更多
Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: ...Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.展开更多
This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through line...This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, hut also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Natural Science Foundation of Zhejiang Province (Grant Nos M603217 and Y104414).
文摘In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Doctorate Foundation of Henan Polytechnic University, China (Grant No 648606). Acknowledgments The author is greatly indebted to the authors of the references for their original valuable work.
文摘Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.
基金Project supported by the National Natural Science Foundation of China (Grant No.60850004)the Funds for Creative Research Talents of Henan Education Bureau,China (Grant No.2009HASTIT021)+3 种基金the Natural Science Foundation of Henan Education Bureau,China (Grant No.2008A120005)Fundamental & Frontier Technology Research Planning Project of Henan Province,China (Grant No.072300460050)Doctorate Program of Henan Polytechnic University (Grant No.648606)Young Teacher Key Talents Program of Henan Polytechnic University (Grant No.649033)
文摘This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, hut also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.