期刊文献+
共找到548篇文章
< 1 2 28 >
每页显示 20 50 100
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
1
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 Deep learning Military application Targets stealth network Mask generation generative adversarial network
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
2
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
An Enhanced GAN for Image Generation
3
作者 Chunwei Tian Haoyang Gao +1 位作者 Pengwei Wang Bob Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期105-118,共14页
Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation... Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes.Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation.In this paper,we propose an enhanced GAN via improving a generator for image generation(EIGGAN).EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness of the generated images.Taking into relation the context account,parallel residual operations are fused into a generation network to extract more structural information from the different layers.Finally,a mixed loss function in a GAN is exploited to make a tradeoff between speed and accuracy to generate more realistic images.Experimental results show that the proposed method is superior to popular methods,i.e.,Wasserstein GAN with gradient penalty(WGAN-GP)in terms of many indexes,i.e.,Frechet Inception Distance,Learned Perceptual Image Patch Similarity,Multi-Scale Structural Similarity Index Measure,Kernel Inception Distance,Number of Statistically-Different Bins,Inception Score and some visual images for image generation. 展开更多
关键词 generative adversarial networks spatial attention mixed loss image generation
下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:3
4
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 Lithium-ion batteries Physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
5
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(PV)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(ESN)
下载PDF
Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation
6
作者 Saurabh Awasthi Gagan Singh Nafees Ahamad 《Energy Engineering》 EI 2023年第4期811-829,共19页
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab... A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults. 展开更多
关键词 Distribution network distributed generation power system modeling fault identification neural network renewable energy systems
下载PDF
Multi-style Chord Music Generation Based on Artificial Neural Network
7
作者 郁进明 陈壮 海涵 《Journal of Donghua University(English Edition)》 CAS 2023年第4期428-437,共10页
With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord m... With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord music, a multi-style chord music generation(MSCMG) network is proposed based on the previous ANN for creation. A music-style extraction module and a style extractor are added by the network on the original basis;the music-style extraction module divides the entire music content into two parts, namely the music-style information Mstyleand the music content information Mcontent. The style extractor removes the music-style information entangled in the music content information. The similarity of music generated by different models is compared in this paper. It is also evaluated whether the model can learn music composition rules from the database. Through experiments, it is found that the model proposed in this paper can generate music works in the expected style. Compared with the long short term memory(LSTM) network, the MSCMG network has a certain improvement in the performance of music styles. 展开更多
关键词 algorithmic composition artificial neural network(ANN) multi-style chord music generation network
下载PDF
Research on Equivalent Modeling Method of AC-DC Power Networks Integrating with Renewable Energy Generation
8
作者 Weigang Jin Lei Chen +3 位作者 Yifei Li Shencong Zheng Yuqi Jiang Hongkun Chen 《Energy Engineering》 EI 2023年第11期2469-2487,共19页
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents... Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed. 展开更多
关键词 Equivalent modeling AC-DC power networks renewable energy generation wind farm improved chaotic cuckoo search algorithm
下载PDF
ZTE Advances African Telecommunications with First CDMA2000-based Fixed Next Generation Network (NGN)
9
《ZTE Communications》 2005年第3期55-55,共1页
关键词 CDMA ngn ZTE Advances African Telecommunications with First CDMA2000-based Fixed Next generation network
下载PDF
ALGORITHMS FOR TETRAHEDRAL NETWORK(TEN) GENERATION 被引量:11
10
作者 LI Qingquan LI Deren 《Geo-Spatial Information Science》 2000年第1期11-16,共6页
The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN appli... The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Although a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed. 展开更多
关键词 3-D GIS tetrahedral network(TEN) generation algorithm
下载PDF
Integrating QoS Management in TLMM:Three Level Mobility Model for Next Generation Wireless IP-Based Networks 被引量:2
11
作者 M.Chakraborty I.S.Misra A.Mukherjee 《China Communications》 SCIE CSCD 2008年第3期125-139,共15页
In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wirel... In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wireless IP-based networks.The QoS solution uses a combination of IntServ and DiffServ models incorporated in TLMM architecture.The paper also proposes an effi cient dynamic handover policy that takes care of false handover.Simulation and analytical results have shown that this infrastructure guarantees eff icient QoS handling and scalability among end users.To provide a comparative understanding of the QoS mechanism and signaling load of TLMM we have used TeleMIP(without QoS support) and MIP as alternative mobility management protocols. 展开更多
关键词 QOS ngn WIRELESS IP network
下载PDF
Evolution of network from node division and generation 被引量:3
12
作者 孙会君 吴建军 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1581-1585,共5页
Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the gr... Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the growth of a network. A broad scale characteristic which is independent of the initial network topology is obtained with the proposed model. By simulating, it is found that preferential attachment causes the appearance of the scale-free characteristic, while the dividing will decrease the power-law behaviour and drive the evolution of broad scale networks. 展开更多
关键词 EVOLUTION dividing generation scale-free network
下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
13
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 Wind power Monthly generation forecast Climate model LSTM neural network
下载PDF
Maximum Data Generation Rate Routing Protocol Based on Data Flow Controlling Technology for Rechargeable Wireless Sensor Networks 被引量:2
14
作者 Demin Gao Shuo Zhang +2 位作者 Fuquan Zhang Xijian Fan Jinchi Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第5期649-667,共19页
For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanentl... For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks. 展开更多
关键词 Wireless sensor networks maximum data generation rate rechargeable-WSNs
下载PDF
Research on Power Control of Wind Power Generation Based on Neural Network Adaptive Control 被引量:1
15
作者 董海鹰 孙传华 《Journal of Measurement Science and Instrumentation》 CAS 2010年第2期173-177,共5页
For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve ... For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved. 展开更多
关键词 wind power generation power control PID adaptive oontroi neural network
下载PDF
Mesh Generation from Dense 3D Scattered Data Using Neural Network 被引量:8
16
作者 ZHANGWei JIANGXian-feng +1 位作者 CHENLi-neng MAYa-liang 《Computer Aided Drafting,Design and Manufacturing》 2004年第1期30-35,共6页
An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scatt... An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scattered data were divided into sub-regions where classified core were represented by the weight vectors of neurons at the output layer of neural network. The weight vectors of the neurons were used to approximate the dense 3-D scattered points, so the dense scattered points could be reduced to a reasonable scale, while the topological feature of the whole scattered points were remained. 展开更多
关键词 reverse engineering mesh generation neural network scattered points data extraction
下载PDF
Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems
17
作者 Dong-Wook Kim Gun-Yoon Sin +3 位作者 Kwangsoo Kim Jaesik Kang Sun-Young Im Myung-Mook Han 《Computers, Materials & Continua》 SCIE EI 2024年第9期3637-3653,共17页
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ... In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient. 展开更多
关键词 Cybersecurity exercise synthetic network traffic generative adversarial network traffic generation software-defined networking
下载PDF
Optimal Location and Sizing ofMulti-Resource Distributed Generator Based onMulti-Objective Artificial Bee Colony Algorithm
18
作者 Qiangfei Cao Huilai Wang +1 位作者 Zijia Hui Lingyun Chen 《Energy Engineering》 EI 2024年第2期499-521,共23页
Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t... Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability. 展开更多
关键词 Distributed generation distribution network life cycle cost multi-objective artificial bee colony algorithm voltage stability
下载PDF
Network Traffic Generation Based on Statistical Packet-Level Characteristics
19
作者 WANG Dongbin ZHUO Weihan +2 位作者 ZHANG Junhui WU Kexin OUYANG Wen 《China Communications》 SCIE CSCD 2015年第S2期144-148,共5页
Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time... Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar. 展开更多
关键词 network TRAFFIC generation packet-level TRAFFIC CHARACTERISTICS
下载PDF
Strategic Thinking on Next Generation Network
20
作者 Wei Leping (China Telecom Corporation,Beijing 100032,China) 《ZTE Communications》 2004年第2期45-49,共5页
It is noted that the revolutionary development of technologies,fundamental change of traffic composition,trend of network convergence as well as market opening and competition have become the driving forces to develop... It is noted that the revolutionary development of technologies,fundamental change of traffic composition,trend of network convergence as well as market opening and competition have become the driving forces to develop Next Generation Networks (NGN).After introducing the concepts and characteristics of NGN,the paper details its 5 strategic development directions:evolution to softswitch-based next generation switching network, evolution to next generation mobile communication network represented by 3G,evolution to IPv6-based next generation Internet,evolution to diversified broadband access network,and evolution to next generation transport network based on optical networking.Finally,it briefs the strategic thinking on NGN of China Telecom,the largest fixed network carrier in the world. 展开更多
关键词 ngn TD WCDMA Strategic Thinking on Next generation network SCDMA
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部