基于试验数据,利用扩展有限元方法(extended finite element method,XFEM)和内聚力模型(cohesive zone model,CZM),对20Cr2Ni3钢顶头表面氧化膜的断裂行为进行了数值分析,研究了氧化膜受力方向和孔洞对裂纹生长行为的影响。结果表明:氧...基于试验数据,利用扩展有限元方法(extended finite element method,XFEM)和内聚力模型(cohesive zone model,CZM),对20Cr2Ni3钢顶头表面氧化膜的断裂行为进行了数值分析,研究了氧化膜受力方向和孔洞对裂纹生长行为的影响。结果表明:氧化膜受力方向影响裂纹扩展路径,外层氧化膜裂纹尖端的J积分和应力强度因子K_I随着θ角(受力方向与氧化膜的夹角)的增大而减小,当θ角增大到90°时裂纹停止生长;外层氧化膜上孔洞使得裂纹尖端的J积分和应力强度因子K_I减小。同时,孔洞的存在使得外力传递到内层氧化膜时产生应力集中和偏移,导致内层裂纹受力不均,减小了受力方向对内层裂纹生长的影响。展开更多
以硝酸镍为镍源、酸/碱性硅溶胶为硅源,采用共沉淀法制备了2种Ni/SiO_(2)催化剂。采用固定床反应器,评价Ni/SiO_(2)催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N_(2)等温吸附-脱附、H_(2)-TPR...以硝酸镍为镍源、酸/碱性硅溶胶为硅源,采用共沉淀法制备了2种Ni/SiO_(2)催化剂。采用固定床反应器,评价Ni/SiO_(2)催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N_(2)等温吸附-脱附、H_(2)-TPR、NH3-TPD、XPS、FTIR和TEM对催化剂进行了表征。考察了硅溶胶的酸碱性对Ni/SiO_(2)催化剂结构及性能的影响。结果表明,以酸性硅溶胶为硅源制备的Ni/SiO_(2)催化剂以弱酸中心酸量为主且存在中强酸中心,比表面积、平均孔径大,因而该催化剂加氢活性和2-MTHF的选择性较高。Ni/SiO_(2)催化剂稳定性良好,在最优反应条件〔温度90℃、H_(2)压力2 MPa、质量空速4.4 g 2-MF/(g催化剂·h)、H_(2)与2-MF物质的量之比为4∶1〕下进行催化剂稳定性测试(200 h),2-MF的转化率达到99.8%,2-MTHF的选择性均保持在97.5%左右。展开更多
文摘基于试验数据,利用扩展有限元方法(extended finite element method,XFEM)和内聚力模型(cohesive zone model,CZM),对20Cr2Ni3钢顶头表面氧化膜的断裂行为进行了数值分析,研究了氧化膜受力方向和孔洞对裂纹生长行为的影响。结果表明:氧化膜受力方向影响裂纹扩展路径,外层氧化膜裂纹尖端的J积分和应力强度因子K_I随着θ角(受力方向与氧化膜的夹角)的增大而减小,当θ角增大到90°时裂纹停止生长;外层氧化膜上孔洞使得裂纹尖端的J积分和应力强度因子K_I减小。同时,孔洞的存在使得外力传递到内层氧化膜时产生应力集中和偏移,导致内层裂纹受力不均,减小了受力方向对内层裂纹生长的影响。
文摘以硝酸镍为镍源、酸/碱性硅溶胶为硅源,采用共沉淀法制备了2种Ni/SiO_(2)催化剂。采用固定床反应器,评价Ni/SiO_(2)催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N_(2)等温吸附-脱附、H_(2)-TPR、NH3-TPD、XPS、FTIR和TEM对催化剂进行了表征。考察了硅溶胶的酸碱性对Ni/SiO_(2)催化剂结构及性能的影响。结果表明,以酸性硅溶胶为硅源制备的Ni/SiO_(2)催化剂以弱酸中心酸量为主且存在中强酸中心,比表面积、平均孔径大,因而该催化剂加氢活性和2-MTHF的选择性较高。Ni/SiO_(2)催化剂稳定性良好,在最优反应条件〔温度90℃、H_(2)压力2 MPa、质量空速4.4 g 2-MF/(g催化剂·h)、H_(2)与2-MF物质的量之比为4∶1〕下进行催化剂稳定性测试(200 h),2-MF的转化率达到99.8%,2-MTHF的选择性均保持在97.5%左右。