期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Design of Multiple Metal Doped Ni Based Catalyst for Hydrogen Generation from Bio-oil Reforming at Mild-temperature 被引量:1
1
作者 袁丽霞 丁芳 +5 位作者 姚建铭 陈祥松 刘伟伟 吴金勇 巩飞艳 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期109-120,I0004,共13页
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor... A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature. 展开更多
关键词 Hydrogen generation BIO-OIL ni based catalyst Mild-temperature
下载PDF
Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO_2 reforming of CH_4 被引量:4
2
作者 Xiangdong Feng Jie Feng Wenying Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期88-98,共11页
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o... The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 CO2 reforming of CH4 Carbon‐deposition resistant Activation of CO2 nibased catalyst Low concentration MgO promoter
下载PDF
Partial oxidation of methane on Ni/CeO_2-ZrO_2/γ-Al_2O_3 prepared using different processes 被引量:4
3
作者 张青蔚 沈美庆 +2 位作者 温静 王军 费亚南 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第3期347-351,共5页
The influences of CeO2-ZrO2 and γ-Al2O3 mixing methods on the catalytic activity and stability of partial oxidation of methane (POM) were investigated over Ni/Ce0.7Zr0.3O2-Al2O3 catalysts. The catalysts were charac... The influences of CeO2-ZrO2 and γ-Al2O3 mixing methods on the catalytic activity and stability of partial oxidation of methane (POM) were investigated over Ni/Ce0.7Zr0.3O2-Al2O3 catalysts. The catalysts were characterized by XRD, TPR, H2-chemsorption, and TG-DTA. For fresh catalysts, the results showed that the salt precursor mixing catalyst (ATOM) presented better performance than the catalysts prepared by the precipitator mixing method (MOL) and the powder mechanically mixing method (MECH). The result of XRD suggested that the interaction between CeO2-ZrO2 and Al2O3 in ATOM sample was stronger than the others, which led to more lattice defects and thereby better initial activity. Moreover, the MECH sample had the best stability and the least coke deposition in 24 h stability tests. The results of TPR and H2-chemsorption indicated that the intimate contact of Ni-Al in MECH sample enhanced the ability of resisting coke deposition and metal sintering. 展开更多
关键词 POM CeO2-ZrO2 γ-Al2O3 ni based catalyst rare earths
下载PDF
Autothermal reforming of biogas over a monolithic catalyst
4
作者 Sadao Araki Naoe Hino +1 位作者 Takuma Mori Susumu Hikazudani 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期477-481,共5页
This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH... This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios. 展开更多
关键词 autothermal reforming BIOGAS hydrogen production monolithic catalyst ni based catalyst
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部