The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125...The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.展开更多
A Central Atom Model is introduced and the LFG and Hsu models are modified in order to evaluate the driving force for the martensitic transformation in Fe-Mn-C and Fe-Ni-C al- loys.The results show that the relationsh...A Central Atom Model is introduced and the LFG and Hsu models are modified in order to evaluate the driving force for the martensitic transformation in Fe-Mn-C and Fe-Ni-C al- loys.The results show that the relationship between the driving force and the yield strength of austenite at Ms temperature,σ_(0.2)~γ/M_s,fits Hsu's formula;ΔG~=2.1σ_(0.2)~γ/M_s+907 J/mol.The M_s temperatures of Fe-Mn-C and Fe-Ni-C alloys are also calculated.The calculated results are in good agreement with experimental values.展开更多
The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigate...The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigated. The experimental results show that the addition of RE elements decreases the martensitic transformation temperature and the Curie temperature. But the bending strength of Ni-Mn-Ga-RE (RE=Tb, Sm) alloys increases remarkably because of the grain refinement. As a result, Ni-Mn-Ga-RE alloys will be applied practically with higher reliability and stability due to favorable plasticity and toughness. In addition, the replacement of small amounts Ga by Tb or Sm decreases the magnetic-field-induced strain of the alloys at room temperature.展开更多
The effects of prestrain and annealing temperature on phase transformation temperatures in Fel4Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both t...The effects of prestrain and annealing temperature on phase transformation temperatures in Fel4Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both the At and the Ms temperatures increased appreciably as the prestrain increased, the As temperature increased slightly with increasing prestrain; the resistivity difference at 303 K between the heating and cooling curve also increased with increasing prestrain, which agreed with the recovery strain. The shape memory effect in Fe-Mn-Si-Cr-Ni shape memory alloy is caused by the stress-induced γ→ε martensite transformation and its reverse transformation. When the prestrain was 10%, the Ms temperature decreased remarkably as the annealing temperature increased.展开更多
The effects of small amount additions of Sm on the martensitic transition and magnetic phase transition of polycrystalline Ni-Mn-Ga alloys were investigated. The experimental results show that the Sm doped alloys also...The effects of small amount additions of Sm on the martensitic transition and magnetic phase transition of polycrystalline Ni-Mn-Ga alloys were investigated. The experimental results show that the Sm doped alloys also undergo a thermal-elastic martensitic transformation and reverse transformation during cooling and heating process and the addition of Sm decreases the martensitic transformation temperature and Curie temperature in different degree respectively. Ni-Mn-Ga alloys of adding Sm still possess Heusler structure, but their crystal lattice parameters are modified slightly. The addition of a proper amount of Sm does not basically decrease T_c of the alloy when avoiding the appearance of second phase. In addition, the doped alloys have favorable toughness because of grain refinement of Sm.展开更多
The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles r...The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.展开更多
The microstructural features, shape memory behavior and mechanical properties of Ni-Mn based alloys were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission el...The microstructural features, shape memory behavior and mechanical properties of Ni-Mn based alloys were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal cycling test under various stresses. The transformation temperatures shifted toward lower temperatures when adding a third element into the Ni-Mn system. The addition of 10 at. pct Fe increased considerably the mechanical properties exhibiting still high transformation temperatures. However, it was found that in NiMn40Fe10 alloy the martensitic transformation is not thermoelastic in nature. The mechanism of this transformation and the crystallography of Ni-Mn(50-x)-Fex (x=5, 7, 10, 20 at. pct) alloys are presented.展开更多
The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200 °C the amount of...The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200 °C the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350°C and the retained austenite decomposes almost until tempering at 560 °C. When tempering at 600 °C, the retained austenite in the alloys all decomposes. At 560°C the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3-1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.展开更多
The composition, morphology, crystalline structure and formation and evolution of X phase in a Cu 12.3Al 2Ni 2Mn 1Ti alloy were studied. The results show that the X phase is a Ti rich phase with atomic ratio of (Cu+Ni...The composition, morphology, crystalline structure and formation and evolution of X phase in a Cu 12.3Al 2Ni 2Mn 1Ti alloy were studied. The results show that the X phase is a Ti rich phase with atomic ratio of (Cu+Ni)∶ Ti∶Al=2∶1∶1 and DO 3 or L2 1 structure; it is directly formed in the liquid phase by crystallization in the process of solidification of the alloy; there forms free particle X phase through the progressive dissolution and breakdown of the inter dendritic microstructure in the following homogenization process. The X phase has three different morphologies, i.e. X L, X LS and X S, whose contents in the matrix rely on the heat treatment conditions. [展开更多
The work-hardening behaviour in an Fe-Mn-Si-Cr-Ni alloy has been investigated using tensile test at different temperatures and TEM observation. It was found that besides the intersection of εmartensite, the intersect...The work-hardening behaviour in an Fe-Mn-Si-Cr-Ni alloy has been investigated using tensile test at different temperatures and TEM observation. It was found that besides the intersection of εmartensite, the intersections of ε martensite with stacking fault and the cross-slip of dislocation which is difficult to occur in the alloy with low stacking fault energy are also important factors to the temperature dependent work-hardening behaviour.展开更多
The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures....The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures. sensitive to external stress. determine the configurations of stacking faults in γphase Partial dislocations at the front sides of stacking faults are usetul for the nucleation of εmartensite plates. The growth of ε martensite plates is accompanied with the disappearance of local pre-existing stacking faults, The ε martensite vanants behave in three morphologies of respective stopping. continuous penetrating and intersections with the formation of secondary ε martensite plates展开更多
With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deform...With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage展开更多
Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied bymagnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resista...Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied bymagnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resistance ofthe as-welded Cu12Mn8Al3Fe2Ni alloy is much more superior to that of the as-cast one. The cumulative mass lossand the mass loss rate of the as-welded Cu12Mn8Al3Fe2Ni alloy are almost 1/4 that of the as-cast one. SEM analysisof eroded specimens reveals that the as-cast Cu12Mn8Al3Fe2Ni alloy is attacked more severely than the as-weldedone. Microcracks causing cavitation damage initiate at the phase boundaries.展开更多
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replac...An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.展开更多
The substructural development of martensite plates at different stage of the transformation for an Fe-21Ni-4Mn alloy has been investigated by using transmission electron microscope. Twinning was found in small thin pl...The substructural development of martensite plates at different stage of the transformation for an Fe-21Ni-4Mn alloy has been investigated by using transmission electron microscope. Twinning was found in small thin platelets at the initial stage.Fine twins extend to the whole platelet.The dislocations and twins were found in the thick platelets at a later stage.Bending of the twins was also observed frequently at this stage.Finally,several platelets coalesce with each other to form a macroscopic(252)_f martensite“plate”.The original habit plane of the individual platelet was measured to be close to(121)_f.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+3 种基金the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(No.22567627H)the Fundamental Research Funds for the Central Universities(No.N2223025)the State Key Lab of Advanced Metals and Materials(No.2022-Z02)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)。
文摘The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.
文摘A Central Atom Model is introduced and the LFG and Hsu models are modified in order to evaluate the driving force for the martensitic transformation in Fe-Mn-C and Fe-Ni-C al- loys.The results show that the relationship between the driving force and the yield strength of austenite at Ms temperature,σ_(0.2)~γ/M_s,fits Hsu's formula;ΔG~=2.1σ_(0.2)~γ/M_s+907 J/mol.The M_s temperatures of Fe-Mn-C and Fe-Ni-C alloys are also calculated.The calculated results are in good agreement with experimental values.
文摘The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigated. The experimental results show that the addition of RE elements decreases the martensitic transformation temperature and the Curie temperature. But the bending strength of Ni-Mn-Ga-RE (RE=Tb, Sm) alloys increases remarkably because of the grain refinement. As a result, Ni-Mn-Ga-RE alloys will be applied practically with higher reliability and stability due to favorable plasticity and toughness. In addition, the replacement of small amounts Ga by Tb or Sm decreases the magnetic-field-induced strain of the alloys at room temperature.
文摘The effects of prestrain and annealing temperature on phase transformation temperatures in Fel4Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both the At and the Ms temperatures increased appreciably as the prestrain increased, the As temperature increased slightly with increasing prestrain; the resistivity difference at 303 K between the heating and cooling curve also increased with increasing prestrain, which agreed with the recovery strain. The shape memory effect in Fe-Mn-Si-Cr-Ni shape memory alloy is caused by the stress-induced γ→ε martensite transformation and its reverse transformation. When the prestrain was 10%, the Ms temperature decreased remarkably as the annealing temperature increased.
文摘The effects of small amount additions of Sm on the martensitic transition and magnetic phase transition of polycrystalline Ni-Mn-Ga alloys were investigated. The experimental results show that the Sm doped alloys also undergo a thermal-elastic martensitic transformation and reverse transformation during cooling and heating process and the addition of Sm decreases the martensitic transformation temperature and Curie temperature in different degree respectively. Ni-Mn-Ga alloys of adding Sm still possess Heusler structure, but their crystal lattice parameters are modified slightly. The addition of a proper amount of Sm does not basically decrease T_c of the alloy when avoiding the appearance of second phase. In addition, the doped alloys have favorable toughness because of grain refinement of Sm.
文摘The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.
基金express their gratitude to the Ministry of Education,Culture and Sports of Japan(MEXT) for partially supporting this research
文摘The microstructural features, shape memory behavior and mechanical properties of Ni-Mn based alloys were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal cycling test under various stresses. The transformation temperatures shifted toward lower temperatures when adding a third element into the Ni-Mn system. The addition of 10 at. pct Fe increased considerably the mechanical properties exhibiting still high transformation temperatures. However, it was found that in NiMn40Fe10 alloy the martensitic transformation is not thermoelastic in nature. The mechanism of this transformation and the crystallography of Ni-Mn(50-x)-Fex (x=5, 7, 10, 20 at. pct) alloys are presented.
文摘The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200 °C the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350°C and the retained austenite decomposes almost until tempering at 560 °C. When tempering at 600 °C, the retained austenite in the alloys all decomposes. At 560°C the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3-1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.
文摘The composition, morphology, crystalline structure and formation and evolution of X phase in a Cu 12.3Al 2Ni 2Mn 1Ti alloy were studied. The results show that the X phase is a Ti rich phase with atomic ratio of (Cu+Ni)∶ Ti∶Al=2∶1∶1 and DO 3 or L2 1 structure; it is directly formed in the liquid phase by crystallization in the process of solidification of the alloy; there forms free particle X phase through the progressive dissolution and breakdown of the inter dendritic microstructure in the following homogenization process. The X phase has three different morphologies, i.e. X L, X LS and X S, whose contents in the matrix rely on the heat treatment conditions. [
文摘The work-hardening behaviour in an Fe-Mn-Si-Cr-Ni alloy has been investigated using tensile test at different temperatures and TEM observation. It was found that besides the intersection of εmartensite, the intersections of ε martensite with stacking fault and the cross-slip of dislocation which is difficult to occur in the alloy with low stacking fault energy are also important factors to the temperature dependent work-hardening behaviour.
文摘The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures. sensitive to external stress. determine the configurations of stacking faults in γphase Partial dislocations at the front sides of stacking faults are usetul for the nucleation of εmartensite plates. The growth of ε martensite plates is accompanied with the disappearance of local pre-existing stacking faults, The ε martensite vanants behave in three morphologies of respective stopping. continuous penetrating and intersections with the formation of secondary ε martensite plates
文摘With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage
文摘Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied bymagnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resistance ofthe as-welded Cu12Mn8Al3Fe2Ni alloy is much more superior to that of the as-cast one. The cumulative mass lossand the mass loss rate of the as-welded Cu12Mn8Al3Fe2Ni alloy are almost 1/4 that of the as-cast one. SEM analysisof eroded specimens reveals that the as-cast Cu12Mn8Al3Fe2Ni alloy is attacked more severely than the as-weldedone. Microcracks causing cavitation damage initiate at the phase boundaries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51601092,51571121,and 11604148)the Fundamental Research Funds for the Central Universities,China(Grant Nos.30916011344 and 30916011345)+5 种基金Jiangsu Natural Science Foundation for Distinguished Young Scholars,China(Grant No.BK20140035)China Postdoctoral Science Foundation(Grant No.2016M591851)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160833 and BK20160829)Qing Lan Project of Jiangsu Province,ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions,ChinaNMG–NJUST Joint Scholarship Program for Ishfaq Ahmad Shah(Student ID:914116020118)
文摘An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.
文摘The substructural development of martensite plates at different stage of the transformation for an Fe-21Ni-4Mn alloy has been investigated by using transmission electron microscope. Twinning was found in small thin platelets at the initial stage.Fine twins extend to the whole platelet.The dislocations and twins were found in the thick platelets at a later stage.Bending of the twins was also observed frequently at this stage.Finally,several platelets coalesce with each other to form a macroscopic(252)_f martensite“plate”.The original habit plane of the individual platelet was measured to be close to(121)_f.