The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendri...The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.展开更多
The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix...The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.展开更多
A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized...A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized with various withdraw rates.The shape and size of carbide microstructures were determined.As expected, the primary and secondary dendrite arm spacings (PDAS and SDAS) decrease with the increase of withdraw rate.The highest volume fraction of eutectic γ/γ' is observed at the 100 μm·s-1 withdraw rate.The volume fraction of eutectic γ/γ' does not appear to be a strong function of the withdraw rate.With increasing withdraw rate, interface morphologies change in the sequence of planar, cellular, and dendrite.There is a general refinement of the microstructure as the withdraw rate increases.EPMA analysis showed that withdraw rate does not have obvious influence on the segregation of elements.展开更多
Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys.We focus our attentio...Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys.We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ ’ phases along the direction perpendicular to the interface.The diffusion mechanisms and the expressions of the diffusion coefficients are presented.The vacancy formation energies,the migration energies,and the activation energies for the diffusing Ni and Al atoms are estimated,and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3–7(002) layers.The local density-of-states profiles of atoms in each(002) layer in the γ and γ ’ phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior.展开更多
In this study, the long-term thermal microstructural stability and related stress rupture lives of a new Re-containing Ni-based single-crystal superalloy, DD11, were investigated after high-temperature exposure for di...In this study, the long-term thermal microstructural stability and related stress rupture lives of a new Re-containing Ni-based single-crystal superalloy, DD11, were investigated after high-temperature exposure for different lengths of time. The results show that the γ' precipitates retained a cuboidal morphology and the γ' size increased after short thermal exposure for 50 h at 1,070℃. As the thermal exposure time was prolonged to 500 h, the cuboidal γ' gradually changed into irregular raft-like morphology due to particles coalescence, and the morphology of the microstructure was almost unchanged after further thermal exposure up to 3,000 h. The stress rupture experiments at 1,070℃ and a tensile stress of 140 MPa showed that the rupture lives increased significantly after thermal exposure for 50 h and dropped dramatically with increasing exposure time up to 500 h but decreased slowly after exposure for more than 500 h. These results imply that stress rupture properties did not decrease when the γ' remained cuboidal but degraded to different extents during the γ' coarsening process. The coarsening of the γ' precipitates and change in morphology were regarded as the main factors leading to the degradation of the stress rupture lives. This study provides fundamental information on the high-temperature longterm microstructural stability and mechanical performance, which will be of great help for DD11 alloy optimization and engineering aeroengine applications.展开更多
An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic s...An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic structure and orthogonal anisotropy properties. The von Mises stress, elastic strain energy density, and hydrostatic pressure in dif- ferent inclusions of micromechanical model are calculated when applying a tensile or compressive loading along the [001] direction. The calculated results can successfully pre- dict the rafting direction for alloys exhibiting a positive or a negative mismatch, which are in agreement with pervious experimental and theoretical studies. Moreover, the elastic constant differences and mismatch degree of the matrix and precipitate phases and their influences on the rafting direction are carefully discussed.展开更多
Three kinds of superalloys were prepared by spray deposited process. The analysis results of microstructures and mechanical properties indicate that the spray deposited preforms with higher integral densification and ...Three kinds of superalloys were prepared by spray deposited process. The analysis results of microstructures and mechanical properties indicate that the spray deposited preforms with higher integral densification and the oxygen content in each kind of superalloy was very low. The microstructures are consisted of fine grain without dendritic equi-axed. The spray deposited superalloys possessed good ductility. The forging experiment displays that even though the once deformation of spray deposited GH742 alloy more than 60%, the crack can not be found. Meanwhile, the mechanical properties of spray deposited superalloys are significantly increased.展开更多
The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and...The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ′ interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.展开更多
The mosaic structure in a Ni-based single-crystal superalloy is simulated by molecular dynamics using a potential employed in a modified analytic embedded atom method. From the calculated results we find that a closed...The mosaic structure in a Ni-based single-crystal superalloy is simulated by molecular dynamics using a potential employed in a modified analytic embedded atom method. From the calculated results we find that a closed threedimensional misfit dislocation network, with index of (011){100} and the side length of the mesh 89.6A, is formed around a cuboidal γ′ precipitate. Comparing the simulation results of the different mosaic models, we find that the side length of the mesh only depends on the lattice parameters of the γ and γ′ phases as well as the γ/γ′ interface direction, but is independent of the size and number of the cuboidal γ′ precipitate. The density of dislocations is inversely proportional to the size of the cuboidal γ′ precipitate, i.e. the amount of the dislocation is proportional to the total area of the γ/γ′ interface, which may be used to explain the relation between the amount of the fine γ′ particles and the creep rupture life of the superalloy. In addition, the closed three-dimensional networks assembled with the misfit dislocations can play a significant role in improving the mechanical properties of superalloys.展开更多
Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstr...Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation.展开更多
An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1...An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.展开更多
The finite element method was applied to study the mechanics of rafting ofγ' precipitates in a single crystal Ni-based superalloy with the [001] orientation. The results show that the creep and rafting are closel...The finite element method was applied to study the mechanics of rafting ofγ' precipitates in a single crystal Ni-based superalloy with the [001] orientation. The results show that the creep and rafting are closely related with the stress and strain energy density distributions in the matrix channels. The application of an external stress leads to differential levels of von Mises stress and strain energy density, and the largest value of the stress appears at the corners of the matrix near the interface. Creep dislocations penetrate preferentially into the most highly stressed matrix channels where theγ'-phase rafting is also enlarged. Meanwhile, the von Mises stress ofγmatrix andγ' precipitate increases with the increase of temperature, thus the rafting becomes easier at a higher temperature. Moreover, according to the analysis of slip systems for the Ni-based superalloy, the critical external load for bowing a dislocation through a matrix channel at 950℃is about 180 MPa, which is consistent with the related experimental results.展开更多
An analytical method to investigate the morphological evolution of the cellular mi-crostructure is explored and proposed. The method is essentially based on the Es-helby 's micromechanics theory, and it is extende...An analytical method to investigate the morphological evolution of the cellular mi-crostructure is explored and proposed. The method is essentially based on the Es-helby 's micromechanics theory, and it is extended so as to be applied for a material system containing inclusions with high volume fraction, by employing the average stress field approximation by Mori and Tanaka. The proposed method enables us to discuss a stable shape of precipitate in the material system, which must be influenced by many factors: e.g., volume fraction of precipitate; Young's modulus ratio and lattice misfit between matrix and precipitate; external stress field in multiaxial state; and heterogeneity of plastic strain between matrix and precipitate. A series of numerical calculations were summarized on stable shape maps. The application of the method to predict the γ' rafting in superalloys during creep showed that the heterogeneity of plastic strain between matrix and precipitates may play a significant role in the shape stability of the precipitate. Furthermore, it was shown that the method was successfully applied to estimate the morphology of the cellular microstructure formed in CMSX-4 single crystal Ni-based superalloy.展开更多
The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni...The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni-based superalloys.The formation energy results show that the main alloying elements in Ni-based superalloys,such as Re,Cr,Mo,Ta,and W,prefer to occupy the Al-site in Ni3 AI,Co shows a weak tendency to occupy the Ni-site,and Ru shows a weak tendency to occupy the Al-site.The SFE results show that Co and Ru could decrease the SFEs when added to fault planes,while other main elements increase SFEs.The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements(except Co) occupy an Al-site.Furthermore,the SFEs show a symmetrical distribution with the location of the elements in the ternary model.A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.展开更多
The sheet metal of a new Ni-based superalloy was prepared by electron beam physical vapor deposition(EB-PVD) technology. X-ray diffraction, transmission electron microscope, optical microscope, scanning electrical mic...The sheet metal of a new Ni-based superalloy was prepared by electron beam physical vapor deposition(EB-PVD) technology. X-ray diffraction, transmission electron microscope, optical microscope, scanning electrical microscope and tensile equipment were used to research the microstructures and mechanical properties of this alloy before and after heat treatment. The results show that there are many defects in as-deposited alloy composed of microcrystallites, and after appropriately heat treatment, the grains grow up and the defect concentration is reduced. The average size of γ ’ particles increases gradually and the morphologies of γ ’ particles change from spherical shape into cubical shape corresponding to different aging treatment temperatures from low to high. Compared with as- deposited alloy, the mechanical properties of heat-treated alloy are improved obviously. It is feasible that superalloy of better properties can be prepared by EB-PVD technology.展开更多
The challenge to rapid manufacturing high performance metal components is how to consolidate the uncompressed powder preforms to full or near full density without shape distortion. A new approach developed by ProMetal...The challenge to rapid manufacturing high performance metal components is how to consolidate the uncompressed powder preforms to full or near full density without shape distortion. A new approach developed by ProMetal was proposed, in which a bimodal powder, typically a coarse prealloyed powder blended with a fine metal powder was used to build green preforms by three-dimensional printing and then sintered at a temperature above the solidus temperature of the coarse prealloyed powder and below the melting temperature of the fine powder particles or the solidus temperature if the fine powder is a prealloyed powder as well. This approach was successfully applied to sinter Ni-based superalloy 718 preforms, which were built through three dimensional printing into near full density.展开更多
Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (AI and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elast...Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (AI and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elastic moduli of γ-Ni. We used machine learning to theoretically predict the relationship between alloying concentration and mechanical properties, giving the binding energy between the two elements. We found that the ternary alloying elements strengthened the 7 phase in the order of Re 〉 Ir 〉 W 〉 Ru 〉 Cr 〉 Mo 〉 Pt 〉 Ta 〉 Co. There is a quadratic parabolic relationship between the number of d shell electrons in the alloying element and the bulk modulus, and the maximum bulk modulus appears when the d shell is half full. We found a linear relationship between bulk modulus and alloying concentration over a certain alloying range. Using linear regression, we found the linear fit concentration coefficient of 29 elements. Using machine learning to theoretically predict the bulk modulus and lattice constants of Ni32XY, we predicted values close to the calculated results, with a regression parameter of R2 = 0.99626. Compared with pure Ni, the alloyed Ni has higher bulk modulus B, G, E, Cll, and C44, but equal Cl2. The alloying strengthening in some of these systems is closely tied to the binding of elements, indicating that the binding energy of the alloy is a way to assess its elastic properties.展开更多
An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results...An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [展开更多
A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation ...A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ′+2γto 10γ′+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ′+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ′ phase volume fraction are calculated by varying the proportion of the γ and γ′ phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.展开更多
The variation of S content during VIM refining Ni-base superalloy using CaO crucible was studied. It was foundthat the desulphurization process could not be carried out by only using CaO crucible. The role of Al addit...The variation of S content during VIM refining Ni-base superalloy using CaO crucible was studied. It was foundthat the desulphurization process could not be carried out by only using CaO crucible. The role of Al additionto desulphurization was also studied. Combining with the results of XRD and composition analysis of the CaOcrucible, the mechanism of desulphurization was proposed. Thermodynamical calculation about the reaction betweenthe interface of CaO crucible and liquid metal has been discussed. This work indicated that under proper refiningtechnology the S content in the liquid Ni-base alloy could be reduced from 3×10-5 to 2×10-6~4×10-6.展开更多
基金Project (50971005) supported by the National Natural Science Foundation of China
文摘The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.
基金supported by the National Natural Science Foundation of China under grant No. 10477006the Key Project of Chinese Ministry of Education undergrant No. 106055
文摘The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.
基金supported by the National Natural Science Foundation of China (Grant No.50771081,50931004)the National Basic Research Program of China (2010CB631202)
文摘A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized with various withdraw rates.The shape and size of carbide microstructures were determined.As expected, the primary and secondary dendrite arm spacings (PDAS and SDAS) decrease with the increase of withdraw rate.The highest volume fraction of eutectic γ/γ' is observed at the 100 μm·s-1 withdraw rate.The volume fraction of eutectic γ/γ' does not appear to be a strong function of the withdraw rate.With increasing withdraw rate, interface morphologies change in the sequence of planar, cellular, and dendrite.There is a general refinement of the microstructure as the withdraw rate increases.EPMA analysis showed that withdraw rate does not have obvious influence on the segregation of elements.
基金Project supported by National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys.We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ ’ phases along the direction perpendicular to the interface.The diffusion mechanisms and the expressions of the diffusion coefficients are presented.The vacancy formation energies,the migration energies,and the activation energies for the diffusing Ni and Al atoms are estimated,and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3–7(002) layers.The local density-of-states profiles of atoms in each(002) layer in the γ and γ ’ phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior.
基金funded by the National High Technology Research and Development Program(No.2012AA03A513)
文摘In this study, the long-term thermal microstructural stability and related stress rupture lives of a new Re-containing Ni-based single-crystal superalloy, DD11, were investigated after high-temperature exposure for different lengths of time. The results show that the γ' precipitates retained a cuboidal morphology and the γ' size increased after short thermal exposure for 50 h at 1,070℃. As the thermal exposure time was prolonged to 500 h, the cuboidal γ' gradually changed into irregular raft-like morphology due to particles coalescence, and the morphology of the microstructure was almost unchanged after further thermal exposure up to 3,000 h. The stress rupture experiments at 1,070℃ and a tensile stress of 140 MPa showed that the rupture lives increased significantly after thermal exposure for 50 h and dropped dramatically with increasing exposure time up to 500 h but decreased slowly after exposure for more than 500 h. These results imply that stress rupture properties did not decrease when the γ' remained cuboidal but degraded to different extents during the γ' coarsening process. The coarsening of the γ' precipitates and change in morphology were regarded as the main factors leading to the degradation of the stress rupture lives. This study provides fundamental information on the high-temperature longterm microstructural stability and mechanical performance, which will be of great help for DD11 alloy optimization and engineering aeroengine applications.
基金supported by The National Natural Science Foundation of China (Grants 11102139 and 11472195)The Natural Science Foundation of Hubei Province of China (Grant 2014CFB713)
文摘An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic structure and orthogonal anisotropy properties. The von Mises stress, elastic strain energy density, and hydrostatic pressure in dif- ferent inclusions of micromechanical model are calculated when applying a tensile or compressive loading along the [001] direction. The calculated results can successfully pre- dict the rafting direction for alloys exhibiting a positive or a negative mismatch, which are in agreement with pervious experimental and theoretical studies. Moreover, the elastic constant differences and mismatch degree of the matrix and precipitate phases and their influences on the rafting direction are carefully discussed.
基金Funded by the Innovation Fund for Outstanding Scholar of Henan Province(No. 0621000700)
文摘Three kinds of superalloys were prepared by spray deposited process. The analysis results of microstructures and mechanical properties indicate that the spray deposited preforms with higher integral densification and the oxygen content in each kind of superalloy was very low. The microstructures are consisted of fine grain without dendritic equi-axed. The spray deposited superalloys possessed good ductility. The forging experiment displays that even though the once deformation of spray deposited GH742 alloy more than 60%, the crack can not be found. Meanwhile, the mechanical properties of spray deposited superalloys are significantly increased.
基金supported by the National Basic Research Program of China (Grant No.2011CB606402)the National Natural Science Foundation of China (Grant No.51071091)
文摘The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ′ interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No G2000067102) and the National Natural Science Foundation of China (Grant No 90101004).
文摘The mosaic structure in a Ni-based single-crystal superalloy is simulated by molecular dynamics using a potential employed in a modified analytic embedded atom method. From the calculated results we find that a closed threedimensional misfit dislocation network, with index of (011){100} and the side length of the mesh 89.6A, is formed around a cuboidal γ′ precipitate. Comparing the simulation results of the different mosaic models, we find that the side length of the mesh only depends on the lattice parameters of the γ and γ′ phases as well as the γ/γ′ interface direction, but is independent of the size and number of the cuboidal γ′ precipitate. The density of dislocations is inversely proportional to the size of the cuboidal γ′ precipitate, i.e. the amount of the dislocation is proportional to the total area of the γ/γ′ interface, which may be used to explain the relation between the amount of the fine γ′ particles and the creep rupture life of the superalloy. In addition, the closed three-dimensional networks assembled with the misfit dislocations can play a significant role in improving the mechanical properties of superalloys.
基金Funded by the Key Program Project of National Natural Science Foundation of China(NSFC)(No.51641102)Natural Science Foundation of Jiangsu Province(No.16KJB430035)+1 种基金Qing Lan Project of Jiangsu Province in ChinaNational Key Laboratory of Science and Technology on Power Beam Processes of Beijing Aeronautical Manufacturing Technology Research Institute
文摘Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.
基金Projects(10572019, 10672016)supported by the National Natural Science Foundation of Chinaproject(2005SM0035) supported by the Science Foundation of Beijing Jiaotong University, China
文摘The finite element method was applied to study the mechanics of rafting ofγ' precipitates in a single crystal Ni-based superalloy with the [001] orientation. The results show that the creep and rafting are closely related with the stress and strain energy density distributions in the matrix channels. The application of an external stress leads to differential levels of von Mises stress and strain energy density, and the largest value of the stress appears at the corners of the matrix near the interface. Creep dislocations penetrate preferentially into the most highly stressed matrix channels where theγ'-phase rafting is also enlarged. Meanwhile, the von Mises stress ofγmatrix andγ' precipitate increases with the increase of temperature, thus the rafting becomes easier at a higher temperature. Moreover, according to the analysis of slip systems for the Ni-based superalloy, the critical external load for bowing a dislocation through a matrix channel at 950℃is about 180 MPa, which is consistent with the related experimental results.
基金supported by the Ministry of Education,Japan,as Grant-in-Aid for Scientific Research(No.12650072 and 15360046)are greatly acknowledged
文摘An analytical method to investigate the morphological evolution of the cellular mi-crostructure is explored and proposed. The method is essentially based on the Es-helby 's micromechanics theory, and it is extended so as to be applied for a material system containing inclusions with high volume fraction, by employing the average stress field approximation by Mori and Tanaka. The proposed method enables us to discuss a stable shape of precipitate in the material system, which must be influenced by many factors: e.g., volume fraction of precipitate; Young's modulus ratio and lattice misfit between matrix and precipitate; external stress field in multiaxial state; and heterogeneity of plastic strain between matrix and precipitate. A series of numerical calculations were summarized on stable shape maps. The application of the method to predict the γ' rafting in superalloys during creep showed that the heterogeneity of plastic strain between matrix and precipitates may play a significant role in the shape stability of the precipitate. Furthermore, it was shown that the method was successfully applied to estimate the morphology of the cellular microstructure formed in CMSX-4 single crystal Ni-based superalloy.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0701502).
文摘The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni-based superalloys.The formation energy results show that the main alloying elements in Ni-based superalloys,such as Re,Cr,Mo,Ta,and W,prefer to occupy the Al-site in Ni3 AI,Co shows a weak tendency to occupy the Ni-site,and Ru shows a weak tendency to occupy the Al-site.The SFE results show that Co and Ru could decrease the SFEs when added to fault planes,while other main elements increase SFEs.The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements(except Co) occupy an Al-site.Furthermore,the SFEs show a symmetrical distribution with the location of the elements in the ternary model.A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.
文摘The sheet metal of a new Ni-based superalloy was prepared by electron beam physical vapor deposition(EB-PVD) technology. X-ray diffraction, transmission electron microscope, optical microscope, scanning electrical microscope and tensile equipment were used to research the microstructures and mechanical properties of this alloy before and after heat treatment. The results show that there are many defects in as-deposited alloy composed of microcrystallites, and after appropriately heat treatment, the grains grow up and the defect concentration is reduced. The average size of γ ’ particles increases gradually and the morphologies of γ ’ particles change from spherical shape into cubical shape corresponding to different aging treatment temperatures from low to high. Compared with as- deposited alloy, the mechanical properties of heat-treated alloy are improved obviously. It is feasible that superalloy of better properties can be prepared by EB-PVD technology.
文摘The challenge to rapid manufacturing high performance metal components is how to consolidate the uncompressed powder preforms to full or near full density without shape distortion. A new approach developed by ProMetal was proposed, in which a bimodal powder, typically a coarse prealloyed powder blended with a fine metal powder was used to build green preforms by three-dimensional printing and then sintered at a temperature above the solidus temperature of the coarse prealloyed powder and below the melting temperature of the fine powder particles or the solidus temperature if the fine powder is a prealloyed powder as well. This approach was successfully applied to sinter Ni-based superalloy 718 preforms, which were built through three dimensional printing into near full density.
基金Project support by the National Key R&D Program of China(Grant Nos.2017YFB0701501,2017YFB0701502,and 2017YFB0701503)
文摘Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (AI and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elastic moduli of γ-Ni. We used machine learning to theoretically predict the relationship between alloying concentration and mechanical properties, giving the binding energy between the two elements. We found that the ternary alloying elements strengthened the 7 phase in the order of Re 〉 Ir 〉 W 〉 Ru 〉 Cr 〉 Mo 〉 Pt 〉 Ta 〉 Co. There is a quadratic parabolic relationship between the number of d shell electrons in the alloying element and the bulk modulus, and the maximum bulk modulus appears when the d shell is half full. We found a linear relationship between bulk modulus and alloying concentration over a certain alloying range. Using linear regression, we found the linear fit concentration coefficient of 29 elements. Using machine learning to theoretically predict the bulk modulus and lattice constants of Ni32XY, we predicted values close to the calculated results, with a regression parameter of R2 = 0.99626. Compared with pure Ni, the alloyed Ni has higher bulk modulus B, G, E, Cll, and C44, but equal Cl2. The alloying strengthening in some of these systems is closely tied to the binding of elements, indicating that the binding energy of the alloy is a way to assess its elastic properties.
文摘An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB605102)
文摘A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ′+2γto 10γ′+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ′+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ′ phase volume fraction are calculated by varying the proportion of the γ and γ′ phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.
文摘The variation of S content during VIM refining Ni-base superalloy using CaO crucible was studied. It was foundthat the desulphurization process could not be carried out by only using CaO crucible. The role of Al additionto desulphurization was also studied. Combining with the results of XRD and composition analysis of the CaOcrucible, the mechanism of desulphurization was proposed. Thermodynamical calculation about the reaction betweenthe interface of CaO crucible and liquid metal has been discussed. This work indicated that under proper refiningtechnology the S content in the liquid Ni-base alloy could be reduced from 3×10-5 to 2×10-6~4×10-6.