期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH_(2)
1
作者 Nuo Xu Zirui Yuan +4 位作者 Zhihong Ma Xinli Guo Yunfeng Zhu Yongjin Zou Yao Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期54-62,共9页
MgH_(2)with a large hydrogen capacity is regarded as a promising hydrogen storage material.However,it still suffers from high thermal stability and sluggish kinetics.In this paper,highly dispersed nano-Ni has been suc... MgH_(2)with a large hydrogen capacity is regarded as a promising hydrogen storage material.However,it still suffers from high thermal stability and sluggish kinetics.In this paper,highly dispersed nano-Ni has been successfully prepared by using the polyol reduction method with an average size of 2.14 nm,which significantly improves the de/rehydrogenation properties of MgH_(2).The MgH_(2)–10wt%nano-Ni sample starts releasing H_(2)at 497 K,and roughly 6.2wt%H_(2)has been liberated at 583 K.The rehydrogenation kinetics of the sample are also greatly improved,and the adsorption capacity reaches 5.3wt%H_(2)in 1000 s at 482 K and under 3 MPa hydrogen pressure.Moreover,the activation energies of de/rehydrogenation of the MgH_(2)–10wt%nano-Ni sample are reduced to(88±2)and(87±1)kJ·mol−1,respectively.In addition,the thermal stability of the MgH_(2)–10wt%nano-Ni system is reduced by 5.5 kJ per mol H_(2)from that of pristine MgH_(2).This finding indicates that nano-Ni significantly improves both the thermodynamic and kinetic performances of the de/rehydrogenation of MgH_(2),serving as a bi-functional additive of both reagent and catalyst. 展开更多
关键词 ni nanoparticle KINETICS THERMODYNAMICS MgH2 hydrogen storage performance
下载PDF
High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH_(2) 被引量:2
2
作者 Shun Wang Mingxia Gao +5 位作者 Zhihao Yao Kaicheng Xian Meihong Wu Yongfeng Liu Wenping Sun Hongge Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3354-3366,共13页
Magnesium hydride(MgH2) is one of the most promising hydrogen storage materials for practical application due to its favorable reversibility, low cost and environmental benign;however, it suffers from high dehydrogena... Magnesium hydride(MgH2) is one of the most promising hydrogen storage materials for practical application due to its favorable reversibility, low cost and environmental benign;however, it suffers from high dehydrogenation temperature and slow sorption kinetics.Exploring proper catalysts with high and sustainable activity is extremely desired for substantially improving the hydrogen storage properties of MgH2. In this work, a composite catalyst with high-loading of ultrafine Ni nanoparticles(NPs) uniformly dispersed on porous hollow carbon nanospheres is developed, which shows superior catalytic activity towards the de-/hydrogenation of MgH2. With an addition of 5wt% of the composite, which contains 90 wt% Ni NPs, the onset and peak dehydrogenation temperatures of MgH2are lowered to 190 and 242 ℃, respectively. 6.2 wt% H2is rapidly released within 30 min at 250 ℃. The amount of H2that the dehydrogenation product can absorb at a low temperature of 150 ℃ in only 250 s is very close to the initial dehydrogenation value. A dehydrogenation capacity of 6.4wt% remains after 50 cycles at a moderate cyclic regime, corresponding to a capacity retention of 94.1%. The Ni NPs are highly active,reacting with MgH2and forming nanosized Mg2Ni/Mg2NiH4. They act as catalysts during hydrogen sorption cycling, and maintain a high dispersibility with the help of the dispersive role of the carbon substrate, leading to sustainably catalytic activity. The present work provides new insight into designing stable and highly active catalysts for promoting the(de)hydrogenation kinetics of MgH2. 展开更多
关键词 Hydrogen storage materials Nano-catalysis Magnesium hydride Porous hollow carbon nanospheres ni nanoparticles
下载PDF
Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene(model tar) 被引量:8
3
作者 Chun Shen Wuqing Zhou +1 位作者 Hao Yu Le Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期322-329,共8页
This paper investigated the influences of surface properties of carbon support and nickel precursors(nickel nitrate, nickel chloride and nickel acetate) on Ni nanoparticle sizes and catalytic performances for steam re... This paper investigated the influences of surface properties of carbon support and nickel precursors(nickel nitrate, nickel chloride and nickel acetate) on Ni nanoparticle sizes and catalytic performances for steam reforming of toluene. Treatment with nitric acid helped to increase the amount of functional groups on the surface and hydrophilic nature of carbon support, leading to a homogeneous distribution of Ni nanoparticles. The thermal decomposition products of nickel precursor also played an important role, Ni nanoparticles supported on carbon treated with acid using nickel nitrate as the precursor exhibited the smallest mean diameter of 4.5 nm. With the loading amount increased from 6 wt% to 18 wt%, the mean particle size of Ni nanoparticles varied from4.5 nm to 9.1 nm. The as-prepared catalyst showed a high catalytic activity and a good stability for toluene steam reforming: 98.1% conversion of toluene was obtained with the Ni content of 12 wt% and the S/C ratio of3, and the conversion only decreased to 92.0% after 700 min. Because of the high activity, good stability, and low cost, the as-prepared catalyst opens up new opportunities for tar removing. 展开更多
关键词 ni nanoparticles Steam reforming Tar removing Catalytic performance
下载PDF
Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles 被引量:1
4
作者 LIU Xiaodan GUO Min +3 位作者 ZHANG Mei WANG Xidong GUO Xiao CHOU Kuochih 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期642-647,共6页
Monodispersed Ni nanoparticles were successfully prepared by chemical reduction with hydrazine hydrate in ethylene glycol. The effect of the amount of polyvinylpyrrolidone (PVP-K30) on the preparation of Ni nanopart... Monodispersed Ni nanoparticles were successfully prepared by chemical reduction with hydrazine hydrate in ethylene glycol. The effect of the amount of polyvinylpyrrolidone (PVP-K30) on the preparation of Ni nanoparticles was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) were employed to characterize the nickel powders. The average nickel particle size can be controlled from 103 nm to 46 ran with increasing the mass ratio of PVP to NiCl2·6H2O. The particles are spherical in shape and are not agglomerated. A possible extensive mechanism of nickel nanoparticle formation has been suggested. 展开更多
关键词 ni nanoparticles nucleation mechanism chemical reduction PVP
下载PDF
Preparation of Ni nanoparticles plating by electrodeposition using reverse microemulsion as template 被引量:1
5
作者 周海晖 彭春玉 +5 位作者 付超鹏 安静 邹贺 王一栋 许岩 旷亚非 《Journal of Central South University》 SCIE EI CAS 2010年第1期40-44,共5页
Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode... Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode. 展开更多
关键词 ni nanoparticles reverse microemulsion ELECTRODEPOSITION electrolytic parameters
下载PDF
Surface regulated Ni nanoparticles on N-doped mesoporous carbon as an efficient electrocatalyst for CO_(2)reduction 被引量:3
6
作者 Min Wang Qi Xie +3 位作者 Huimin Chen Guangbo Liu Xuejing Cui Luhua Jiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第12期2306-2312,共7页
Low cost,highly selective and efficient electrocatalysts for CO_(2)reduction reaction(CO_(2)RR)is crucial for lowering the global carbon footprint and mitigating energy shortages.Here,we first report a highly selectiv... Low cost,highly selective and efficient electrocatalysts for CO_(2)reduction reaction(CO_(2)RR)is crucial for lowering the global carbon footprint and mitigating energy shortages.Here,we first report a highly selective and efficient electrocatalyst for CO_(2)RR to CO using a surface-regulated Ni nanoparticles supported on N-doped CMK-3(N,O-Ni/CMK3).Compared with most Ni metal catalysts previously reported with severe competitive hydrogen evolution during the CO_(2)RR,the N,O-Ni/CMK3 catalyst presents a superior CO faradaic efficiency of about 97%,a high CO partial current density(13.01 mA cm^(-1))and turnover frequency(4.25 s^(–1)).The comprehensive characterization provides evidence that the N,O co-regulated Ni acts as the active center.Taking advantage of the N,O co-regulated chemical environment,N,O-Ni/CMK3 also displays a decent stability at negative potentials.Our work paves a novel approach for developing transition metal catalysts for CO_(2)RR with enhanced activity and selectivity via regulating surface chemical environment. 展开更多
关键词 CO_(2)electro-reduction reaction ni nanoparticle N-doped mesoporous carbon Surface regulation High selectivity
下载PDF
A Facile Solvothermal Synthesis of Monodisperse Ni Nanoparticles
7
作者 YU Peng-fei CUI Bin ZHANG Yan SHI Qi-zhen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第3期260-262,共3页
A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample ... A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the nanoparticles are coated with oleic acid. In the synthetic process, N2H4·H2O was used as a reducing agent and oleic acid as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed. 展开更多
关键词 ni nanoparticle Solvothermal method MONODISPERSE
下载PDF
Catalytic reductive amination of furfural to furfurylamine on robust ultra-small Ni nanoparticles
8
作者 Yinze Yang Leilei Zhou +3 位作者 Xinchao Wang Liyan Zhang Haiyang Cheng Fengyu Zhao 《Nano Research》 SCIE EI CSCD 2023年第3期3719-3729,共11页
The synthesis of primary amines via reductive amination in the presence of NH_(3)and H_(2),as a green and sustainable process,has attracted much attention.In this paper,we prepared series of Ni/SiO_(2)catalysts with d... The synthesis of primary amines via reductive amination in the presence of NH_(3)and H_(2),as a green and sustainable process,has attracted much attention.In this paper,we prepared series of Ni/SiO_(2)catalysts with deposition-precipitation and impregnation methods,and their catalytic performances on the reductive amination of a biomass derived compound of furfural to produce furfurylamine were studied.The catalytic activity and the yield were correlated to the structure and the surface properties of catalysts largely.The Ni/SiO_(2)is of high Lewis acidity and small Ni particle with numerous large Ni flat step surface showed high activity and selectivity,it afforded a reaction rate of 12.8 h^(−1)and a high yield to furfurylamine around 98%.These results are superior to the most non-noble metal catalysts reported so far.Moreover,the reaction route was examined with the unit control reactions of the intermediate.To produce furfurylamine selectively,the most suitable catalyst should have the moderate but not the highest activity in activation of hydrogen and hydrogenation in the reductive amination of furfural.This work provides some useful information for the catalytic reductive amination of aldehydes both in the design of catalyst and the reaction route. 展开更多
关键词 ni nanoparticle reductive amination FURFURAL FURFURYLAMINE
原文传递
Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO_(2)electroreduction
9
作者 Kaining Li Yasutaka Kuwahara Hiromi Yamashita 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期66-76,共11页
Electrochemical CO_(2)reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily ac... Electrochemical CO_(2)reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2)electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2)and a Faradaic efficiency of 93.0%at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2)reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond. 展开更多
关键词 Hollow carbon sphere ni nanoparticle CO_(2)reduction Electrocatalysis Single-atom catalyst
下载PDF
Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane 被引量:13
10
作者 Limin Zhou Tianran Zhang Zhanliang Tao Jun Chen 《Nano Research》 SCIE EI CAS CSCD 2014年第5期774-781,共8页
We report on the preparation of three kinds of Ni nanoparticles supported on carbon (Ni/C) and their application in the catalytic hydrolysis of ammonia borane (AB). Three Ni/C catalysts were prepared from a Ni met... We report on the preparation of three kinds of Ni nanoparticles supported on carbon (Ni/C) and their application in the catalytic hydrolysis of ammonia borane (AB). Three Ni/C catalysts were prepared from a Ni metal-organic framework (Ni-MOF) precursor by reduction with KBI-G calcination at 700 ℃ under Ar, and a combination of calcination and reduction, the products being denoted as Ni/C-1, Ni/C-2, and Ni/C-3, respectively. The structure, morphology, specific surface area, and element valence were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption measurements, and X-ray photoelectron spectra (XPS). The results demonstrate that Ni/C-1 is composed of amorphous Ni particles agglomerated on carbon, Ni/C-2 is characteristic of crystalline Ni nanoparticles (about 10 nm in size) supported on carbon with Ni oxidized on the surface, while the surface of the Ni particles in Ni/C-3 is less oxidized. The specific surface areas of Ni-MOF, Ni/C-1, Ni/C-2, and Ni/C-3 are 1239, 33, 470, and 451 m2·g-1, respectively. The catalytic hydrolysis of AB with Ni/C-3 shows a hydrogen generation rate of 834 mL-min^-1·g-1 at room temperature and an activation energy of 31.6 kJ/mol. Ni/C-3 shows higher catalytic activity than other materials, which can be attributed to its larger surface area of crystalline Ni. This study offers a promising way to replace noble metal by under ambient conditions. Ni nanoparticles for AB hydrolysis 展开更多
关键词 ni nanoparticles ammonia borane catalytic hydrolysis hydrogen generation
原文传递
Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction 被引量:1
11
作者 Lingtao Kong Zhouxun Li +6 位作者 Hui Zhang Mengmeng Zhang Jiaxing Zhu Mingli Deng Zhenxia Chen Yun Ling Yaming Zhou 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第7期1114-1124,共11页
Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a po... Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a porous Ni-doped carbon matrix were produced by the pyrolysis of zirconium metal–organic–frameworks, in which 2,2′-bipyridine-5,5′-dicarboxylate operating as a ligand can coordinate with Ni^(2+) and Fe^(3+). This strategy allows formation of Fe-modulated Ni nanoparticles with a uniform dimension of about 2 nm which can be ascribed to the spatial blocking effect of ZrO_(2). This unique catalyst displays an efficient oxygen evolution reaction electrocatalytic activity with a low overpotential of 372 mV at 10 mA·cm^(–2) and a small Tafel slope of 84.4 mV·dec^(–1) in alkaline media. More importantly, it shows superior durability and structural stability after 43 h in a chronoamperometry test. Meanwhile, it shows excellent cycling stability during 4000 cyclic voltammetry cycles. This research offers a new insight into the construction of uniform nanoscale transition metals and their alloys as highly efficient and durable electrocatalysts. 展开更多
关键词 metal–organic framework PYROLYSIS ULTRAFINE Fe-modulated ni nanoparticles oxygen evolution reaction
原文传递
Ni nanoparticles encapsulated within H-type ZSM-5 crystals for upgrading palmitic acid to diesel-like fuels
12
作者 Yanchun Shi Chen Gao +4 位作者 Enhui Xing Jimei Zhang Feng Duan He Zhao Yongbing Xie 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期803-806,共4页
Meso-Ni@HZSM-5 bi-functional catalysts were successfully post-encapsulated with about 3-7 nm Ni nanoparticles within HZSM-5 crystals,which exhibited significantly efficient conversion activity(67.4 g[palmitic acid]g[N... Meso-Ni@HZSM-5 bi-functional catalysts were successfully post-encapsulated with about 3-7 nm Ni nanoparticles within HZSM-5 crystals,which exhibited significantly efficient conversion activity(67.4 g[palmitic acid]g[Ni]^(−1)h^(−1))of palmitic acid and 100%selectivity of hydrocarbons with the outstanding stability during recycling application,compared to the impregnated Ni/HZSM-5 catalyst(14.0 g[palmitic acid]g[Ni]^(−1)h^(−1)). 展开更多
关键词 Post-encapsulation ni@HZSM-5 ni nanoparticles Palmitic acid HYDRODEOXYGENATION Hydrocarbons
原文传递
Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory
13
作者 李卫 徐岭 +4 位作者 赵伟明 丁宏林 马忠元 徐骏 陈坤基 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期408-412,共5页
This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanopartictes were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application ... This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanopartictes were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO2 layer on p-type Si (100). Capacitance-voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance-time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 104 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. 展开更多
关键词 METAL-OXIDE-SEMICONDUCTOR CAPACITANCE-VOLTAGE capacitance time ni nanoparticles
下载PDF
hcp-phased Ni nanoparticles with generic catalytic hydrogenation activities toward different functional groups
14
作者 Yang Lv Xin Mao +8 位作者 Wanbing Gong Dongdong Wang Chun Chen Porun Liu Yue Lin Guozhong Wang Haimin Zhang Aijun Du Huijun Zhao 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1252-1261,共10页
Catalytic hydrogenation is a vital industrial means to produce value-added fuels and fine chemicals,however, requiring highly efficient catalysts, especially the nonprecious ones. To date, the majority of high-perform... Catalytic hydrogenation is a vital industrial means to produce value-added fuels and fine chemicals,however, requiring highly efficient catalysts, especially the nonprecious ones. To date, the majority of high-performance industrial hydrogenation catalysts are made of precious metals-based materials, and any given catalyst could only be used to catalyze one or few specific reactions. Herein, we exemplify a crystal phase engineering approach to empower Ni nanoparticles(NPs) with superb intrinsic catalytic activities toward a wide spectrum of hydrogenation reactions. A facile pyrolysis approach is used to directly convert a Ni-imidazole MOF precursor into hexagonal close-packed(hcp)-phased Ni NPs on carbon support. The as-synthesized hcp-phased Ni NPs exhibit unprecedented hydrogenation catalytic activities in pure water towards nitro-, aldehyde-, ketone-, alkene-and N heterocyclic-compounds, outperforming the face-centered cubic(fcc)-Ni counterpart and the reported transition metalsbased catalysts. The density functional theory calculations unveil that the presence of hcp-Ni boosts the intrinsic catalytic hydrogenation activity by coherently enhancing the substrate adsorption strength and lowering the reaction barrier energy of the rate-determining step. We anticipate that the crystal phase engineering design approach unveiled in this work would be adoptable to other types of reactions. 展开更多
关键词 crystal phase engineering hcp-phased ni nanoparticles catalytic hydrogenation DFT calculations H_(2)O solvent
原文传递
Preparation of Ni/PZT Core-shell Nanoparticles and Their Electromagnetic Properties
15
作者 范桂芬 XU Xing +3 位作者 WANG Xiaochuan LU Wenzhong LIANG Fei WANG Kai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期9-14,共6页
The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray d... The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray diffraction patterns(XRD) exhibited that a small amount of impure phase characterized to Ni(OH)2 was detected from the ammonia-treated Ni nanoparticles and the ammonia-treated Ni nanoparticles coated with PZT. After being pre-treated with aqueous ammonia, the PZT coating layer was more uniform and about 10 nm in thickness. The oxidation resistance of the ammonia-treated Ni nanoparticles coated with PZT, compared with that of the non-treated ones, was improved by about 66 ℃. The PZT shell layer prepared by in-situ reaction can greatly reduce the dielectric constant and improve the natural resonance loss at high frequency, so as to obtain the optimal impedance matching performance of the electromagnetic wave transmission. 展开更多
关键词 ni nanoparticles sol-gel method in situ reaction PZT coating layer electromagnetic property
下载PDF
Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions
16
作者 Yi-Tao Yang Chong-Hong Zhang +3 位作者 Chang-Hao Su Zhao-Nan Ding Yin Song Yu-Guang Chen 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期46-49,共4页
Metallic nanoparticle (NP) shapes have a significant influence on the property of composite embedded with metallic NPs. Swift heavy ion irradiation is an effective way to modify shapes of metallic NPs embedded in an... Metallic nanoparticle (NP) shapes have a significant influence on the property of composite embedded with metallic NPs. Swift heavy ion irradiation is an effective way to modify shapes of metallic NPs embedded in an amorphous matrix. We investigate the shape deformation of Ag NPs with irradiation fluence, and 357 MeV Ni ions are used to irradiate the silica containing Ag NPs, which are prepared by ion implantation and vacuum annealing. The UV-vis results show that the surface plasmon resonance (SPR) peak from Ag NPs shifts from 400 to 377nm. The SPR peak has a significant shift at fluence lower than 1 × 10^14 ions/cm2 and shows less shift at fluence higher than 1 × 10^14 ions/cm2. The TEM results reveal that the shapes of Ag NPs also show significant deformation at fluence lower than 1 × 10^14 ions/cm2 and show less deformation at fluence higher than 1 × 10^14 ions/cm2. The blue shift of the SPR peak is considered to be the consequence of defect production and Ag NP shape deformation, Based on the thermal spike model calculation, the temperature of the silica surrounding Ag particles first increases rapidly, then the region of Ag NPs close to the interface of Ag/silica is gradually heated. Therefore, the driven force of Ag NPs deformation is considered as the volume expansion of the first heated silica layer surrounding Ag NPs. 展开更多
关键词 NP Ag Aligned Elongation of Ag nanoparticles Embedded in Silica Irradiated with High Energy ni Ions ni
下载PDF
Tribological properties and tribomechanism of nickel nanoparticles in-situ synthesized in rapeseed oil 被引量:1
17
作者 Wenya XU Guangbin YANG +6 位作者 Shengmao ZHANG Jun XU Yujuan ZHANG Tianhua SUN Ningning SONG Laigui YU Pingyu ZHANG 《Friction》 SCIE EI CAS CSCD 2024年第3期474-489,共16页
Nickel(Ni)nanoparticles can be enriched on the surface of iron-based frictional pairs,which provides the possibility to get rid of the competitive adsorption between the polar species of vegetable oil and the surface-... Nickel(Ni)nanoparticles can be enriched on the surface of iron-based frictional pairs,which provides the possibility to get rid of the competitive adsorption between the polar species of vegetable oil and the surface-active nano-additives thereon.In this paper,nickel acetylacetonate was used as a precursor to in-situ synthesize nickel nanoparticles with an average diameter of about 12 nm in rapeseed oil(RO)as the reducing agent,surface modifier,and solvent as well.The tribological properties of the as-synthesized Ni nanoparticles were evaluated with a four-ball tribometer,and their tribomechanism was investigated based on the characterizations of the tribofilm on rubbed steel surfaces by the scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).It was found that the Ni nanoparticles in-situ prepared in the RO with a mass fraction of 0.3%can reduce the wear scar diameter(WSD)of the steel ball by 36%.This is because,on the one hand,the Ni nanoparticles are adsorbed on the rubbed steel surfaces to repair or fill up the micro-pits and grooves thereon.On the other hand,Ni nanoparticles participate in tribochemical reactions with atmospheric O and steel substrate to form the tribochemical reaction film on the rubbed steel surfaces with the assistance of friction-induced heat and applied normal load.In addition,an amorphous carbon film is formed on the rubbed surface via the carbonization of base oil under the catalysis of Ni nanoparticles.The adsorbed Ni layer,the tribochemical reaction film,and the carbon layer comprise a composite tribofilm composed of amorphous carbon,polar fatty acid,metallic nickel,iron oxides,and nickel oxides on the rubbed steel surfaces,which contributes to significantly improving the antiwear ability and load-carrying capacity of the RO for the steel-steel sliding pair. 展开更多
关键词 nickel(ni)nanoparticles rapeseed oil(RO) in-situ synthesis tribological properties tribomechanism
原文传递
The first observation of Ni nanoparticle exsolution from YSZ and its application for dry reforming of methane
18
作者 Sangwook Joo Chaehyun Lim +7 位作者 Ohhun Kwon Linjuan Zhang Jing Zhou Jian-Qiang Wang Hu Young Jeong Yong-wook Sin Sihyuk Choi Guntae Kim 《Materials Reports(Energy)》 2021年第2期70-76,共7页
Ni nanocatalysts produced through exsolution have shown strong resistance to particle sintering and carbon coking in a beneficial dry reforming of methane(DRM)reaction utilizing greenhouse gases such as CH_(4)and CO_(... Ni nanocatalysts produced through exsolution have shown strong resistance to particle sintering and carbon coking in a beneficial dry reforming of methane(DRM)reaction utilizing greenhouse gases such as CH_(4)and CO_(2).However,most of the existing oxide supports for exsolution have been limited to perovskite oxide,while studies on fluorite support have been rarely conducted due to the limited solubility despite its excellent redox stability.Here we demonstrate that 3 mol%Ni can be successfully dissolved into the yttria-stabilized zirconia(YSZ)lattice and be further exsolved to the surface in a reducing atmosphere.The YSZ decorated with exsolved Ni nanoparticles shows enhanced catalytic activity for DRM reaction compared to the conventional cermet type of bulk Ni-YSZ.Moreover,the catalytic activity is extremely stable for about 300 h without significant degradation.Overall results suggest that the YSZ-based fluorite structure can be utilized as one of the support oxides for exsolution. 展开更多
关键词 Dry forming of methane EXSOLUTION Yttria-stabilized zirconia(YSZ) ni nanoparticle
下载PDF
Regulating the intrinsic electronic structure of carbon nanofibers with high-spin state Ni for sodium storage with high-power density
19
作者 Zhijia Zhang Gang Xie +6 位作者 Yuefang Chen Yanhao Wei Mengmeng Zhang Shulei Chou Yunxiao Wang Yifang Zhang Yong Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期16-23,共8页
Carbon nanofibers(CNFs)with high specific surface area show great potential for sodium storage as a hard carbon material.Herein,CNFs anchored with Ni nanoparticles(CNFs/Ni)were prepared through chemical vapor depositi... Carbon nanofibers(CNFs)with high specific surface area show great potential for sodium storage as a hard carbon material.Herein,CNFs anchored with Ni nanoparticles(CNFs/Ni)were prepared through chemical vapor deposition and impregnation reduction methods,in situ growing on the three-dimensional porous copper current collector(3DP-Cu).The coupling effect of high-spin state Ni nanopar-ticles leads to the increase of defect density and the expansion of lattice spacing of CNFs.Meanwhile,the 3DP-Cu ensures a high loading capacity of CNFs and short ion/electron transport channels.As an integral binder-free anode,the 3DP-Cu/CNFs/Ni exhibits excellent electrochemical performance,which demon-strates a high specific capacity with 298.5 mAh g^(-1)at 1000 mA g^(-1)after 1500 cycles,and a high power density with 200 mAh g^(-1)over 1000 cycles at 5000 mA g^(-1).Density functional theory calculation re-sults show that the high-spin state Ni regulates the electronic structure of CNFs,which significantly reduces the adsorption energy for Na^(+)(-2.7 Ev)and thus enables high-rate capability.The regulation of the electronic structure of carbon materials by high-spin state metal provides a new strategy for developing high-power carbonaceous anode materials for sodium-ion batteries. 展开更多
关键词 Carbon nanofibers ni nanoparticles High-spin state Sodium-ion batteries Anode materials Density functional theory calculation
原文传递
N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage 被引量:4
20
作者 Ruchao Wei Man Huang +5 位作者 Wenzhe Ma Baojuan Xi Zhenyu Feng Haibo Li Jinkui Feng Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期136-146,共11页
Herein,nickel@nitrogen-doped carbon nanotubes(Ni@NCNTs)are prepared by a simple and reliable method with Ni-based complex as single-source precursor.Significantly,the formation of CNTs is not susceptible to the calcin... Herein,nickel@nitrogen-doped carbon nanotubes(Ni@NCNTs)are prepared by a simple and reliable method with Ni-based complex as single-source precursor.Significantly,the formation of CNTs is not susceptible to the calcination temperature and ramping rate and Ni@NCNTs can be attained from 430 to 900℃in an inert atmosphere.Then they are the first time to be applied as the anode material for sodium-ion batteries.The presence of Ni nanoparticles(NPs)facilitates the solid electrolyte interface film over the anode surface and improves the capacity retention of the host material,especially at the high rates.Furthermore,Na+diffusion is reinforced after the introduction of Ni NPs.Ni@NCNTs obtained at 500℃(Ni@NCNTs-500)exhibit the best capacity retention and rate capability.Kinetics analyses demonstrate the faster electron transportation and ion diffusion than others prepared at other temperatures.The surficial capacitance storage favors the fast electrochemistry kinetics.It delivers a high specific capacity(192 mA h g^−1 at 0.5 A g^−1),excellent cycling stability(103 mA h g^−1 after 10,000 cycles at 10 A g^−1),and outstanding high-rate capability up to 20 A g^−1(118 mA h g^−1).The related full cells confirm a high energy density of 140 Wh kg^−1 at 38.16 W kg^−1 and 44.27 W h kg^−1 at 762 W kg^−1. 展开更多
关键词 nitrogen-doped carbon nanotubes ni nanoparticles ANODE Sodium-ion batteries
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部