Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a ...Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.展开更多
Due to the highly porous structure,large specific surface area,and 3 D interconnected metal conductive network,nanoporous metal foams have attracted a lot of attention in the field of energy conversion and storage,esp...Due to the highly porous structure,large specific surface area,and 3 D interconnected metal conductive network,nanoporous metal foams have attracted a lot of attention in the field of energy conversion and storage,especially lithium-ion batteries,which are ideal for current collectors.In this work,we develop a facile approach to fabricate core-shell Ni3Se2/Ni nanofoams composites.The Ni3Se2/Ni composites make full use of both the advantages of metal conductive network and core-shell structure,resulting in a high capacity and superior rate performance.In addition,the composites can be directly converted into electrode by a simple mechanical compression,which is more convenient than traditional casting method.What’s more,this material and its structure can be extended to other devices in the field of energy conversion and storage.展开更多
Ni(Co/Zn/Cu)Fe_2O_4/SiC@SiO_2, a microwave absorber, was prepared by the sol-gel method. The phase structure and the morphology of the microwave absorbers were characterized by X-Ray Diffraction(XRD) and scanning elec...Ni(Co/Zn/Cu)Fe_2O_4/SiC@SiO_2, a microwave absorber, was prepared by the sol-gel method. The phase structure and the morphology of the microwave absorbers were characterized by X-Ray Diffraction(XRD) and scanning electron microscopy(SEM), respectively. Laser sizer(LS) and X-ray photoelectron spectroscopy(XPS) analysis show the core-shell structure of SiC@SiO_2. Coaxial method was used to measure the microwave absorption properties of the prepared composites in the frequency range of 2-18 GHz. When 70 wt% SiC is wrapped by 30 wt% SiO_2,and 50 wt% NiFe_2O_4 is added into 50 wt% SiC@SiO_2, the as-prepared powders are found to have advanced microwave absorption properties with a minimum reflection loss(RL) of -32.26 dB at about 6.08 GHz, and the available bandwidth is approximately 2.1 GHz when the RL is below -10 dB.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51672183)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.
基金financially supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY608)the Fujian Provincial Natural Science Foundation of China(No.2017J05008)the National Natural Science Foundation of China(No.11704071).
文摘Due to the highly porous structure,large specific surface area,and 3 D interconnected metal conductive network,nanoporous metal foams have attracted a lot of attention in the field of energy conversion and storage,especially lithium-ion batteries,which are ideal for current collectors.In this work,we develop a facile approach to fabricate core-shell Ni3Se2/Ni nanofoams composites.The Ni3Se2/Ni composites make full use of both the advantages of metal conductive network and core-shell structure,resulting in a high capacity and superior rate performance.In addition,the composites can be directly converted into electrode by a simple mechanical compression,which is more convenient than traditional casting method.What’s more,this material and its structure can be extended to other devices in the field of energy conversion and storage.
基金financially supported by the Military Project of the Ministry of National Defense of China (No. JPPT-125-2-168)
文摘Ni(Co/Zn/Cu)Fe_2O_4/SiC@SiO_2, a microwave absorber, was prepared by the sol-gel method. The phase structure and the morphology of the microwave absorbers were characterized by X-Ray Diffraction(XRD) and scanning electron microscopy(SEM), respectively. Laser sizer(LS) and X-ray photoelectron spectroscopy(XPS) analysis show the core-shell structure of SiC@SiO_2. Coaxial method was used to measure the microwave absorption properties of the prepared composites in the frequency range of 2-18 GHz. When 70 wt% SiC is wrapped by 30 wt% SiO_2,and 50 wt% NiFe_2O_4 is added into 50 wt% SiC@SiO_2, the as-prepared powders are found to have advanced microwave absorption properties with a minimum reflection loss(RL) of -32.26 dB at about 6.08 GHz, and the available bandwidth is approximately 2.1 GHz when the RL is below -10 dB.