In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
This article reports the production of COx free hydrogen and carbon nanofibers by the catalytic decomposition of methane over Ni-Al2O3-SiO2 catalysts. The influence of reaction temperature, pretreatment temperature, a...This article reports the production of COx free hydrogen and carbon nanofibers by the catalytic decomposition of methane over Ni-Al2O3-SiO2 catalysts. The influence of reaction temperature, pretreatment temperature, and effect of reductive pretreatment on the decomposition of methane activity is investigated. The physico-chemical characteristics of fresh and deactivated samples were characterized using BET-SA, XRD, TPR, SEM/TEM, CHNS analyses and correlated with the methane decomposition results obtained. The Ni-Al-Si (4 : 0.5 : 1.5) catalyst reduced with hydrazine hydrate produced better H2 yields of ca. 1815 mol H2/mol Ni than the catalyst reduced with 5% H2/N2.展开更多
Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction ...Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction (HDO) of anisole as model reaction. Ni/α-Al2O3 was found to be the highest active catalyst for HDO of anisole. Under the optimal conditions, the anisole conversion is 93.25% and the hydrocarbon yield is 90.47%. Catalyst characteriza-tion using H2-TPD method demonstrates that Ni/α-Al2O3 catalyst possesses more amount of active metal Ni than those of other investigated catalysts, which can enhance the cat-alytic activity for hydrogenation. Furthermore, it is found that the Ni/α-Al2O3 catalyst has excellent repeatability, and the carbon deposited on the surface of catalyst is negligible.展开更多
The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent...The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent catalysts used at different time,indicated that the main reason of the catalyst deactivation was the deposition of carbonaceous species that covered the active Ni and blocked mesopores of the catalyst.The TPO and SEM measurements revealed that the carbonaceous species included both oligomeric and polymeric species with high C/H ratio and showed sheet.Such carbonaceous species might be eliminated through either direct H2 reduction or the combined oxidation-reduction methodologies.展开更多
Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated....Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.展开更多
A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
文摘This article reports the production of COx free hydrogen and carbon nanofibers by the catalytic decomposition of methane over Ni-Al2O3-SiO2 catalysts. The influence of reaction temperature, pretreatment temperature, and effect of reductive pretreatment on the decomposition of methane activity is investigated. The physico-chemical characteristics of fresh and deactivated samples were characterized using BET-SA, XRD, TPR, SEM/TEM, CHNS analyses and correlated with the methane decomposition results obtained. The Ni-Al-Si (4 : 0.5 : 1.5) catalyst reduced with hydrazine hydrate produced better H2 yields of ca. 1815 mol H2/mol Ni than the catalyst reduced with 5% H2/N2.
文摘Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction (HDO) of anisole as model reaction. Ni/α-Al2O3 was found to be the highest active catalyst for HDO of anisole. Under the optimal conditions, the anisole conversion is 93.25% and the hydrocarbon yield is 90.47%. Catalyst characteriza-tion using H2-TPD method demonstrates that Ni/α-Al2O3 catalyst possesses more amount of active metal Ni than those of other investigated catalysts, which can enhance the cat-alytic activity for hydrogenation. Furthermore, it is found that the Ni/α-Al2O3 catalyst has excellent repeatability, and the carbon deposited on the surface of catalyst is negligible.
基金Supported by the National Natural Science Foundation of China(21673132).
文摘The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent catalysts used at different time,indicated that the main reason of the catalyst deactivation was the deposition of carbonaceous species that covered the active Ni and blocked mesopores of the catalyst.The TPO and SEM measurements revealed that the carbonaceous species included both oligomeric and polymeric species with high C/H ratio and showed sheet.Such carbonaceous species might be eliminated through either direct H2 reduction or the combined oxidation-reduction methodologies.
基金supported by Guangdong Provincial Natural Science Foundation of China(030514)Science and Technology Plan of Guangdong Province of China(2004B33401006)Doctoral Startup Foundation of Guang Dong Pharmaceutical University.
文摘Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.