Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor...Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.展开更多
Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of th...Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.展开更多
Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The ...Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The micrographic observations suggest that the SiC particles with various sizes can be well incorporated to the Ni substrate.X-ray diffraction(XRD)patterns indicate that SiC particles with smaller sizes could weaken the preferential growth of Ni along(200)facet.In addition,it is found that the incorporated SiC particles with medium micron sizes(8 and 1.5μm)could significantly enhance the micro-hardness of the Ni composite coatings.Nevertheless,electrochemical measurements demonstrate that micron-sized SiC particles would weaken the corrosion resistance of Ni composite coatings ascribed to the structure defects induced.In contrast,the combined incorporation of nanosized(50 nm)SiC particles with medium micron(1.5μm)ones is capable of promoting the compactness of the composite coatings,which is beneficial to the long-term corrosion resistance with negligible micro-hardness loss.展开更多
The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase stru...The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating.展开更多
Five kinds of Ni-based coatings with 0 wt% , 2. 5 wt% , 5.0 wt% , 7.5 wt% and 10. 0 wt% molybdenum were prepared on 45CrNi steel plates by using laser cladding technique. The effect of Mo on the microstructure of Ni-b...Five kinds of Ni-based coatings with 0 wt% , 2. 5 wt% , 5.0 wt% , 7.5 wt% and 10. 0 wt% molybdenum were prepared on 45CrNi steel plates by using laser cladding technique. The effect of Mo on the microstructure of Ni-based coatings was investigated by using scanning electron microscopy. The corrosive wear resistance and the corrosion resistance of five coatings were tested. The results show that the corrosive wear resistance of the coating with 5.0 wt% Mo is better than those of other coatings. During the corrosive wear process, the corrosion and wear effects are combined. The corrosive wear resistance is closely related to the microstructure of the coating.展开更多
Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied ...Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.展开更多
Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti...Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1–2.8 mm from the coating surface is about Hv0.2 551.5.展开更多
Ni-based coatings were deposited on copper substrates by a hydrothermal approach. The results showed that a Ni-based cellular microstructure was bridged by "fiber-like" products. A high microhardness of Hv 856 was a...Ni-based coatings were deposited on copper substrates by a hydrothermal approach. The results showed that a Ni-based cellular microstructure was bridged by "fiber-like" products. A high microhardness of Hv 856 was achieved after 400℃ heat treatment, which is nine times that of copper substrates (Hv 95). Nucleation, growth, and fusion of Ni atoms along the linear direction, induced by a linear-type cit- rate-metal structural "molecule template", led to in-situ growth of Ni-based fibers between cellular microspheres. After 400℃ heat treatment, the precipitation of NiP and Ni3P hard phases contributed to the high microhardness of Ni-based coatings.展开更多
Cr1-xAlxN coatings have been deposited on a Ti3Al based alloy by reactive sputtering method. The results of the isothermal oxidation test at 800-900℃ showed that Cr1-xAlxN coatings could remarkably reduce the oxidati...Cr1-xAlxN coatings have been deposited on a Ti3Al based alloy by reactive sputtering method. The results of the isothermal oxidation test at 800-900℃ showed that Cr1-xAlxN coatings could remarkably reduce the oxidation rate of the alloy owing to the formation of Al2O3+Cr2O3 mixture oxide scale on the surface of the coatings. No spallation of the coatings or oxide scales took place during the cyclic oxidation at 800℃. Ti was observed to diffuse into the coatings, the diffusion distance of which was very short, and the diffusion ability of it was proportional to the AI content in the coatings. Compared to Ti, Nb can diffuse much more easily through the whole coatings and oxide scales.展开更多
The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness...The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.展开更多
The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were ...The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were synthesized using the HVOF process.The microstructure and the mechanical properties of the HVOF-processed coatings were investigated using SEM,TEM,XRD,and hardness and wear tests.Annealing treatment was applied to the as-sprayed coatings to develop the microstructure and its effect on the microstructure and mechanical properties of the coatings was examined.It is found that the HVOF-processed Mo-based alloy coatings are comprised of an amorphous splat matrix embedded with nano-sized crystalline particles.Annealing at temperatures over 950 ℃ results into crystallization of the amorphous matrix.The mechanical properties of the as-sprayed coatings are enhanced with annealing temperature up to 750 ℃ and from 950 to 1050 ℃,keeps constant between 750 and 950 ℃,and reduce over 1050 ℃.The change of the mechanical property with the microstructure was illustrated in the study.展开更多
In this paper, Ni-Cr-Al-Y-Si coating deposited by vacuum are deposition on the Ni_3Alalloy IC6, the typical use of which is for turbine blades and vanes, was examined.The results of the tests show that the tensile pro...In this paper, Ni-Cr-Al-Y-Si coating deposited by vacuum are deposition on the Ni_3Alalloy IC6, the typical use of which is for turbine blades and vanes, was examined.The results of the tests show that the tensile properties at room temperature and stress rupture properties at 1100℃ of the IC6 alloy were not obviously influenced by the coatings. At annealing state, limited element interdiffusion was observed. After stress rupture testing for 252 h at 1100℃/90 MPa, however,significant interdiffusion of Mo, Cr and Al took place between the coating layer and the substrate.The element diffustion did not result in the formation of brittle phases on the coating/substrate interface. No cracking and spallation in the coating were found.Therefore it can be concluded that the Ni-Cr-Al-Y-Si overlay coating was successful for protecting the IC6 alloy.展开更多
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of the...Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion.展开更多
The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The mic...The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The microstructure, phase composition and wear property of the composite coating were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the composite coating is homogeneous and free from cracks, and about 0.8 mm thick. The microstructure of the composite coating is mainly composed of NbC particles, CrB type chromium borides, 7-Ni primary dendrites, and interdendritic eutectics. CrB phases often nucleate and grow on the surface of NbC particles or in their close vicinity. NbC particles are formed via in situ reaction between niobium and graphite in the molten pool during the laser cladding process and they are commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower-like shape. Compared with the pure Ni- based alloy coating, the microhardness of the composite coating is increased about 38%, giving a high average hardness of HV0.21000, and the wear rate of the composite coating is decreased by about 32%, respectively. These are attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.展开更多
The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4...The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion.展开更多
To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by las...To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.展开更多
CO2 laser is adopted on the surface of austenitic stainless steel (ICrlSNiQ) to clad nickel based nanometer WC/Co composite coating. SEM, EDAX, XRD, AFM and Scratch Testers are adopted to conduct analysis and research...CO2 laser is adopted on the surface of austenitic stainless steel (ICrlSNiQ) to clad nickel based nanometer WC/Co composite coating. SEM, EDAX, XRD, AFM and Scratch Testers are adopted to conduct analysis and research on the microstructure, composition, phase and bonding strength of the coating. Results indicate that the microstructure of coating is metallurgically bonded with stainless steel base, eliminating porosities and cracks. The coating has a considerable quantity of nanometer particles visible with a granularity ^lOOnm under a nanoscope atomic microscope. The bonding strength of the laser cladded coating is remarkably improved respectively compared with conventional hot-sprayed coating and spray welding. The nanometer effect of nanometer WC/Co introduced into the coating plays an important role in the laser cladding processes.展开更多
A study for further improving the suspension rate of alcohol-based coatings using a new nano-dispersing agent has been presented in this paper. The results of experiments show that the new nano-dispersing agent should...A study for further improving the suspension rate of alcohol-based coatings using a new nano-dispersing agent has been presented in this paper. The results of experiments show that the new nano-dispersing agent should be used in combination with organic auxiliary agent which significantly increases the suspension effect of alcohol-based coatings. By the methods, the suspension rates of 99%, 98%, 96% and 94% can be achieved at 2h, 2h, 48h and 72h, respectively. These alcohol-based coatings have characters of higher strength, lower gas evolution, better brush ability and no blister after ignition.展开更多
Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous report...Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study展开更多
The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polariz...The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polarization curves and a.c.impedance in weak polarization region consistent regularities were obtained by these different methods,viz.,the corrosion resistance of Zn could be enhanced by alloying it with Al,and particularly with Al-RE.The causes of enhancement of corrosion resistance by RE were also discussed.展开更多
文摘Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.
文摘Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.
基金This work was financially supported by National Natural Science Foundation of China(Nos.51901018 and 51771027)National Science and Technology Resources In-vestigation Program of China(No.2019FY101400)+3 种基金Funda-mental Research Funds for the Central Universities,China(Nos.FRF-MP-19-001 and FRF-AT-20-07)National Key Research and Development Program of China(No.2017YFB0702100)China Postdoctoral Science Foundation(No.2019M660456)Young Elite Scientists Sponsor-ship Program by China Association for Science and Techno-logy(YESS,No.2019QNRC001).
文摘Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The micrographic observations suggest that the SiC particles with various sizes can be well incorporated to the Ni substrate.X-ray diffraction(XRD)patterns indicate that SiC particles with smaller sizes could weaken the preferential growth of Ni along(200)facet.In addition,it is found that the incorporated SiC particles with medium micron sizes(8 and 1.5μm)could significantly enhance the micro-hardness of the Ni composite coatings.Nevertheless,electrochemical measurements demonstrate that micron-sized SiC particles would weaken the corrosion resistance of Ni composite coatings ascribed to the structure defects induced.In contrast,the combined incorporation of nanosized(50 nm)SiC particles with medium micron(1.5μm)ones is capable of promoting the compactness of the composite coatings,which is beneficial to the long-term corrosion resistance with negligible micro-hardness loss.
文摘The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating.
基金This research was supported by National Natural Science Foundation of China (50775221).
文摘Five kinds of Ni-based coatings with 0 wt% , 2. 5 wt% , 5.0 wt% , 7.5 wt% and 10. 0 wt% molybdenum were prepared on 45CrNi steel plates by using laser cladding technique. The effect of Mo on the microstructure of Ni-based coatings was investigated by using scanning electron microscopy. The corrosive wear resistance and the corrosion resistance of five coatings were tested. The results show that the corrosive wear resistance of the coating with 5.0 wt% Mo is better than those of other coatings. During the corrosive wear process, the corrosion and wear effects are combined. The corrosive wear resistance is closely related to the microstructure of the coating.
基金Projects(51371145,51431003,U1435201,51401166)supported by the National Natural Science Foundation of ChinaProject(B080401)supported by the Programme of Introducing Talents of Discipline to Universities,China
文摘Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.
基金financially supported by the Natural Science Foundation of Jiangsu Province, China (No.BK2011250)the Jiangsu Province Postdoctoral Science Foundation (No. 1101017C)+1 种基金the China Postdoctoral Science Foundation (No. 20100481079)the China Scholarship Council and Outstanding Innovative Talents Support Plan of Hohai University
文摘Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1–2.8 mm from the coating surface is about Hv0.2 551.5.
文摘Ni-based coatings were deposited on copper substrates by a hydrothermal approach. The results showed that a Ni-based cellular microstructure was bridged by "fiber-like" products. A high microhardness of Hv 856 was achieved after 400℃ heat treatment, which is nine times that of copper substrates (Hv 95). Nucleation, growth, and fusion of Ni atoms along the linear direction, induced by a linear-type cit- rate-metal structural "molecule template", led to in-situ growth of Ni-based fibers between cellular microspheres. After 400℃ heat treatment, the precipitation of NiP and Ni3P hard phases contributed to the high microhardness of Ni-based coatings.
基金the National Natural Science Foundation of China under grant Nos. 50371095 , 50571106.
文摘Cr1-xAlxN coatings have been deposited on a Ti3Al based alloy by reactive sputtering method. The results of the isothermal oxidation test at 800-900℃ showed that Cr1-xAlxN coatings could remarkably reduce the oxidation rate of the alloy owing to the formation of Al2O3+Cr2O3 mixture oxide scale on the surface of the coatings. No spallation of the coatings or oxide scales took place during the cyclic oxidation at 800℃. Ti was observed to diffuse into the coatings, the diffusion distance of which was very short, and the diffusion ability of it was proportional to the AI content in the coatings. Compared to Ti, Nb can diffuse much more easily through the whole coatings and oxide scales.
文摘The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.
基金supported by the National 863 projects by the Department of Science and Technology of China (No. 2002AA331080)the Program of Beijing Significant Science and Technology Project (No.020420050021)
文摘The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were synthesized using the HVOF process.The microstructure and the mechanical properties of the HVOF-processed coatings were investigated using SEM,TEM,XRD,and hardness and wear tests.Annealing treatment was applied to the as-sprayed coatings to develop the microstructure and its effect on the microstructure and mechanical properties of the coatings was examined.It is found that the HVOF-processed Mo-based alloy coatings are comprised of an amorphous splat matrix embedded with nano-sized crystalline particles.Annealing at temperatures over 950 ℃ results into crystallization of the amorphous matrix.The mechanical properties of the as-sprayed coatings are enhanced with annealing temperature up to 750 ℃ and from 950 to 1050 ℃,keeps constant between 750 and 950 ℃,and reduce over 1050 ℃.The change of the mechanical property with the microstructure was illustrated in the study.
文摘In this paper, Ni-Cr-Al-Y-Si coating deposited by vacuum are deposition on the Ni_3Alalloy IC6, the typical use of which is for turbine blades and vanes, was examined.The results of the tests show that the tensile properties at room temperature and stress rupture properties at 1100℃ of the IC6 alloy were not obviously influenced by the coatings. At annealing state, limited element interdiffusion was observed. After stress rupture testing for 252 h at 1100℃/90 MPa, however,significant interdiffusion of Mo, Cr and Al took place between the coating layer and the substrate.The element diffustion did not result in the formation of brittle phases on the coating/substrate interface. No cracking and spallation in the coating were found.Therefore it can be concluded that the Ni-Cr-Al-Y-Si overlay coating was successful for protecting the IC6 alloy.
文摘Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion.
基金Funded by the National Natural Science Foundation of China (No.50675136 and No.50375096)
文摘The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The microstructure, phase composition and wear property of the composite coating were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the composite coating is homogeneous and free from cracks, and about 0.8 mm thick. The microstructure of the composite coating is mainly composed of NbC particles, CrB type chromium borides, 7-Ni primary dendrites, and interdendritic eutectics. CrB phases often nucleate and grow on the surface of NbC particles or in their close vicinity. NbC particles are formed via in situ reaction between niobium and graphite in the molten pool during the laser cladding process and they are commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower-like shape. Compared with the pure Ni- based alloy coating, the microhardness of the composite coating is increased about 38%, giving a high average hardness of HV0.21000, and the wear rate of the composite coating is decreased by about 32%, respectively. These are attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.
基金financially supported by the Ocean Public Science and Technology Research Fund Projects of China (No. 201405013-3)the Science & Technology Program of Shanghai Maritime University (No. 20130448)+1 种基金the China Postdoctoral Science Foundation (No. 2017M620153)the National Natural Science Foundation of China (No. 51609133)
文摘The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion.
基金supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,Chinathe Open Fund of the State Key Laboratory of Materials Processing and Die&Mould Technology in Huazhong University of Science and Technology,China
文摘To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.
文摘CO2 laser is adopted on the surface of austenitic stainless steel (ICrlSNiQ) to clad nickel based nanometer WC/Co composite coating. SEM, EDAX, XRD, AFM and Scratch Testers are adopted to conduct analysis and research on the microstructure, composition, phase and bonding strength of the coating. Results indicate that the microstructure of coating is metallurgically bonded with stainless steel base, eliminating porosities and cracks. The coating has a considerable quantity of nanometer particles visible with a granularity ^lOOnm under a nanoscope atomic microscope. The bonding strength of the laser cladded coating is remarkably improved respectively compared with conventional hot-sprayed coating and spray welding. The nanometer effect of nanometer WC/Co introduced into the coating plays an important role in the laser cladding processes.
文摘A study for further improving the suspension rate of alcohol-based coatings using a new nano-dispersing agent has been presented in this paper. The results of experiments show that the new nano-dispersing agent should be used in combination with organic auxiliary agent which significantly increases the suspension effect of alcohol-based coatings. By the methods, the suspension rates of 99%, 98%, 96% and 94% can be achieved at 2h, 2h, 48h and 72h, respectively. These alcohol-based coatings have characters of higher strength, lower gas evolution, better brush ability and no blister after ignition.
文摘Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study
文摘The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polarization curves and a.c.impedance in weak polarization region consistent regularities were obtained by these different methods,viz.,the corrosion resistance of Zn could be enhanced by alloying it with Al,and particularly with Al-RE.The causes of enhancement of corrosion resistance by RE were also discussed.