The growth of Gd film on Ni(110) surfaco was studied by synchrotron radiation photoemission spectroscopy and XPS techniques. It is revealed that in the coverage range of 0—0.22 nm Gd4f core level showed a single-peak...The growth of Gd film on Ni(110) surfaco was studied by synchrotron radiation photoemission spectroscopy and XPS techniques. It is revealed that in the coverage range of 0—0.22 nm Gd4f core level showed a single-peak structure, therefore Gd film grows over Ni(110) in the layer-by-layer mode. However, when Gd coverage was larger than 0.22, nm the Gd4f peak turned gradually into double-peak and a double-peak structure with 2.3 eV separation was formed at 1.51 nm, meanwhile similar phenomenon was observed in the Gd4d XPS spectra. It is suggested that the double-peak structure of Gd4f was derived from the growth of Gd film in cluster mode and the Gd atomic clusters may exhibit different electronic states from Gd metal owing to their special structures. The Gd4f double-peak evolved into a single-peak on annealing at 600 K, implying that Gd clusters are thermodynamically unstable.展开更多
The coadsorption of chlorine with oxygen on Ni(110) surface has been investigated by XPS, UPS, AES and work function measurements. The chlorine preadsorption drastically inhibits the further uptake of oxygen. On the c...The coadsorption of chlorine with oxygen on Ni(110) surface has been investigated by XPS, UPS, AES and work function measurements. The chlorine preadsorption drastically inhibits the further uptake of oxygen. On the contrary, precovered oxygen has hardly any influence on the additional adsorption of chlorine due to the incorporation of precovered oxygen into the subsurface driven by the chlorine coadsorption. ARXPS measurements provide the evidence for this coadsorption model. The thermal desorption of chlorine and oxygen from the coadsorption surface is very similar to that of both individual adsorbates under the same heating conditions, but the desorption temperature of both the adsorbates apparently decreases on the coadsorption surface. The coadsorption and thermodesorption mechanisms are also discussed in detail.展开更多
文摘The growth of Gd film on Ni(110) surfaco was studied by synchrotron radiation photoemission spectroscopy and XPS techniques. It is revealed that in the coverage range of 0—0.22 nm Gd4f core level showed a single-peak structure, therefore Gd film grows over Ni(110) in the layer-by-layer mode. However, when Gd coverage was larger than 0.22, nm the Gd4f peak turned gradually into double-peak and a double-peak structure with 2.3 eV separation was formed at 1.51 nm, meanwhile similar phenomenon was observed in the Gd4d XPS spectra. It is suggested that the double-peak structure of Gd4f was derived from the growth of Gd film in cluster mode and the Gd atomic clusters may exhibit different electronic states from Gd metal owing to their special structures. The Gd4f double-peak evolved into a single-peak on annealing at 600 K, implying that Gd clusters are thermodynamically unstable.
基金Project supported by the National Natural Science Foundation of China
文摘The coadsorption of chlorine with oxygen on Ni(110) surface has been investigated by XPS, UPS, AES and work function measurements. The chlorine preadsorption drastically inhibits the further uptake of oxygen. On the contrary, precovered oxygen has hardly any influence on the additional adsorption of chlorine due to the incorporation of precovered oxygen into the subsurface driven by the chlorine coadsorption. ARXPS measurements provide the evidence for this coadsorption model. The thermal desorption of chlorine and oxygen from the coadsorption surface is very similar to that of both individual adsorbates under the same heating conditions, but the desorption temperature of both the adsorbates apparently decreases on the coadsorption surface. The coadsorption and thermodesorption mechanisms are also discussed in detail.