Corrosion resistance of laser powder bed fusion(LPBF)Cu-15Ni-8Sn alloys is crucial towards its practical application in marine engineering.In this work,corrosion behavior of LPBF Cu-15Ni-8Sn alloy was com-prehensively...Corrosion resistance of laser powder bed fusion(LPBF)Cu-15Ni-8Sn alloys is crucial towards its practical application in marine engineering.In this work,corrosion behavior of LPBF Cu-15Ni-8Sn alloy was com-prehensively investigated.The results suggest that LPBF Cu-15Ni-8Sn alloy exhibits superior corrosion re-sistance than the conventional casting counterpart and their corrosion behavior is highly associated with Sn segregation.Generally,a triple-layer film will be formed on the surface of LPBF Cu-15Ni-8Sn alloy when being exposed to 3.5 wt%NaCl solution.To be more detailed,the abundance of nanoscale Sn-rich precipitates at the molten pool boundaries promotes the initial formation of a thick inner layer,where Ni and Sn tend to be distributed at inner and outer positions of the layer,respectively.In contrast,the inner layer on molten pools is much thinner ascribed to a lower Sn content,facilitating the earlier nucleation and growth of a compact middle layer that is mainly composed of numerous Cu-rich nanoparticles.At the outmost position,CuO,Cu(OH)_(2) and Ni(OH)_(2) constitute the major composition of the loose layer.The results of this study could contribute to the optimal design and processing of additively manufactured Cu-Ni-Sn alloys.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51901018)Young Elite Scientists Sponsorship Program by China Association for Science and Tech-nology(YESS,No.2019QNRC001)+3 种基金the Fundamental Research Funds for the Central Universities(No.FRF-AT-20-07,06500119)the Nat-ural Science Foundation of Beijing Municipality(No.2212037)the National Science and Technology Resources Investigation Program of China(No.2019FY101400)the National Natural Science Foundation of China(No.52104368).
文摘Corrosion resistance of laser powder bed fusion(LPBF)Cu-15Ni-8Sn alloys is crucial towards its practical application in marine engineering.In this work,corrosion behavior of LPBF Cu-15Ni-8Sn alloy was com-prehensively investigated.The results suggest that LPBF Cu-15Ni-8Sn alloy exhibits superior corrosion re-sistance than the conventional casting counterpart and their corrosion behavior is highly associated with Sn segregation.Generally,a triple-layer film will be formed on the surface of LPBF Cu-15Ni-8Sn alloy when being exposed to 3.5 wt%NaCl solution.To be more detailed,the abundance of nanoscale Sn-rich precipitates at the molten pool boundaries promotes the initial formation of a thick inner layer,where Ni and Sn tend to be distributed at inner and outer positions of the layer,respectively.In contrast,the inner layer on molten pools is much thinner ascribed to a lower Sn content,facilitating the earlier nucleation and growth of a compact middle layer that is mainly composed of numerous Cu-rich nanoparticles.At the outmost position,CuO,Cu(OH)_(2) and Ni(OH)_(2) constitute the major composition of the loose layer.The results of this study could contribute to the optimal design and processing of additively manufactured Cu-Ni-Sn alloys.