Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based...Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.展开更多
To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure,...To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure, and time on the separation of Ni and Cd werestudied respectively. The mechanism of vacuum thermal recycling was also discussed. Results showthat vacuum distillation is a very effective separation method for waste Ni-Cd batteries. At aconstant pressure, the increase of temperature can improve the separating efficiency of Cd. When thetemperature is 1 173 K, cadmium can evaporate completely from the samples during 3 h at 10 Pa. Thereduction of pressure in a certain range is effective to the separating of Cd from Ni-Cd batteriesby vacuum distillation.展开更多
Recovery of Ni-Cd batteries was studied by a self-designed vacuum-aided recovering system under laboratory conditions. The fundamental research on a process of disassembling and recovering selected materials from Ni-C...Recovery of Ni-Cd batteries was studied by a self-designed vacuum-aided recovering system under laboratory conditions. The fundamental research on a process of disassembling and recovering selected materials from Ni-Cd batterieswas conducted. The impacts of temperature, pressure and time were studied respectively. The mechanism of vacuum thermal recovering was also discussed. The results show that: Ni-Cd batteries can be recovered effectively byvacuum-aided recovering system at 573~1173 K. At constant pressure, the increase of temperature can improve theseparating efficiency of cadmium. When the temperature is 1173 K, the cadmium can evaporate completely fromthe residue during 3 h at 10 Pa. The reduction of pressure in the certain range is effective to separate cadmium byvacuum distillation. Distillation time is a very important factor affecting separation of cadmium.展开更多
Electrical transport properties such as conductivity (σ) and thermo electric power (S) of Cadmium substituted Nickel Ferrites, forming chemical formula Ni1–xCdxFe2O4, where x = 0.0, 0.2, 0.4 have been investigated f...Electrical transport properties such as conductivity (σ) and thermo electric power (S) of Cadmium substituted Nickel Ferrites, forming chemical formula Ni1–xCdxFe2O4, where x = 0.0, 0.2, 0.4 have been investigated from room temperature to well beyond the Curie temperature. Plots of log (σT) versus 103/T are linear and show a transition near the Curie temperature. The transition temperature is found to decrease with increase of Cd content. On the basis of Seebeck coefficient (S), the ferrites under investigation have been classified as n-type and p-type semiconductors. The values of charge carrier concentration and mobility have been computed from experimental values of Seebeck coefficient and electrical conductivity. The activation energy in the ferrimagnetic region is in general less than that in the paramagnetic region. An attempt is made to explain the conduction mechanism in these ferrites.展开更多
Biohydrometallurgy is a novel method to recycle discarded batteries,in which sewage sludge is used as microorganisms and culture due to the presence of indigenous Thiobacilli.A two-step continuous flow leaching system...Biohydrometallurgy is a novel method to recycle discarded batteries,in which sewage sludge is used as microorganisms and culture due to the presence of indigenous Thiobacilli.A two-step continuous flow leaching system consisting of an acidifying reactor and a leaching reactor was introduced to achieve the bioleaching of spent nickel-cadmium(Ni-Cd)batteries.The acid supernatant produced in the acidifying reactor by the microorganisms with ferrous ions as the substrate was conducted into the leaching reactor to dissolve electrode materials.The efficiency of a batch treatment of batteries was examined.The results showed that the complete dissolution of two AA-sized Ni-Cd batteries with 0.6 L/d acid supernatant took about 30,20,and 35 days for Ni,Cd,and Co,respectively.But the dissolution ability of the three metals was different.Cd and Co can be leached mostly for pH below 4.0 while the complete dissolution of Ni can be achieved for pH below 2.5.Meanwhile,a strain(named Thiooxidans.WL)accounting for the reduction of pH in the acidified sludge was isolated and sequenced.It was identified to be 100%similar to Acidithiobacillus ferrooxidans strain Tf-49 based on 16S rDNA sequence analysis.The relevant phylogenetic tree constructed indicates that the strain should be classified into genus Acidithiobacillus ferrooxidans.展开更多
基金Project(2017 YFB 1200801-12)supported by the National Natural Science Foundation of China。
文摘Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.
文摘To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure, and time on the separation of Ni and Cd werestudied respectively. The mechanism of vacuum thermal recycling was also discussed. Results showthat vacuum distillation is a very effective separation method for waste Ni-Cd batteries. At aconstant pressure, the increase of temperature can improve the separating efficiency of Cd. When thetemperature is 1 173 K, cadmium can evaporate completely from the samples during 3 h at 10 Pa. Thereduction of pressure in a certain range is effective to the separating of Cd from Ni-Cd batteriesby vacuum distillation.
文摘Recovery of Ni-Cd batteries was studied by a self-designed vacuum-aided recovering system under laboratory conditions. The fundamental research on a process of disassembling and recovering selected materials from Ni-Cd batterieswas conducted. The impacts of temperature, pressure and time were studied respectively. The mechanism of vacuum thermal recovering was also discussed. The results show that: Ni-Cd batteries can be recovered effectively byvacuum-aided recovering system at 573~1173 K. At constant pressure, the increase of temperature can improve theseparating efficiency of cadmium. When the temperature is 1173 K, the cadmium can evaporate completely fromthe residue during 3 h at 10 Pa. The reduction of pressure in the certain range is effective to separate cadmium byvacuum distillation. Distillation time is a very important factor affecting separation of cadmium.
文摘Electrical transport properties such as conductivity (σ) and thermo electric power (S) of Cadmium substituted Nickel Ferrites, forming chemical formula Ni1–xCdxFe2O4, where x = 0.0, 0.2, 0.4 have been investigated from room temperature to well beyond the Curie temperature. Plots of log (σT) versus 103/T are linear and show a transition near the Curie temperature. The transition temperature is found to decrease with increase of Cd content. On the basis of Seebeck coefficient (S), the ferrites under investigation have been classified as n-type and p-type semiconductors. The values of charge carrier concentration and mobility have been computed from experimental values of Seebeck coefficient and electrical conductivity. The activation energy in the ferrimagnetic region is in general less than that in the paramagnetic region. An attempt is made to explain the conduction mechanism in these ferrites.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20477027).
文摘Biohydrometallurgy is a novel method to recycle discarded batteries,in which sewage sludge is used as microorganisms and culture due to the presence of indigenous Thiobacilli.A two-step continuous flow leaching system consisting of an acidifying reactor and a leaching reactor was introduced to achieve the bioleaching of spent nickel-cadmium(Ni-Cd)batteries.The acid supernatant produced in the acidifying reactor by the microorganisms with ferrous ions as the substrate was conducted into the leaching reactor to dissolve electrode materials.The efficiency of a batch treatment of batteries was examined.The results showed that the complete dissolution of two AA-sized Ni-Cd batteries with 0.6 L/d acid supernatant took about 30,20,and 35 days for Ni,Cd,and Co,respectively.But the dissolution ability of the three metals was different.Cd and Co can be leached mostly for pH below 4.0 while the complete dissolution of Ni can be achieved for pH below 2.5.Meanwhile,a strain(named Thiooxidans.WL)accounting for the reduction of pH in the acidified sludge was isolated and sequenced.It was identified to be 100%similar to Acidithiobacillus ferrooxidans strain Tf-49 based on 16S rDNA sequence analysis.The relevant phylogenetic tree constructed indicates that the strain should be classified into genus Acidithiobacillus ferrooxidans.