An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replac...An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.展开更多
In the present work, crystal structure and for- mation mechanism of the secondary phase in Heusler Ni- Mn-Sn-Co materials were investigated using X-ray dif- fraction, scanning/transmission electron microscopy and sele...In the present work, crystal structure and for- mation mechanism of the secondary phase in Heusler Ni- Mn-Sn-Co materials were investigated using X-ray dif- fraction, scanning/transmission electron microscopy and selected-area electron diffraction techniques. Experimental results showed that the secondary phase presented in both Ni44.1Mn35.1Sn10.8Co10 as-cast bulk alloy and melt-spun ribbon, possessing a face-centered cubic (fcc) NilTSn3-type structure. The secondary phase in the as-cast bulk alloy was resulted from a eutectic reaction after the formation of a primary dendritic flphase during cooling. However in the melt-spun rapidly solidified ribbon, the secondary phase was largely suppressed as nano-precipitates distributed along the grain boundaries, which was attributed to a divorced eutectic reaction. The secondary phase exhibited partial amorphous state due to high local cooling rate.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51601092,51571121,and 11604148)the Fundamental Research Funds for the Central Universities,China(Grant Nos.30916011344 and 30916011345)+5 种基金Jiangsu Natural Science Foundation for Distinguished Young Scholars,China(Grant No.BK20140035)China Postdoctoral Science Foundation(Grant No.2016M591851)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160833 and BK20160829)Qing Lan Project of Jiangsu Province,ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions,ChinaNMG–NJUST Joint Scholarship Program for Ishfaq Ahmad Shah(Student ID:914116020118)
文摘An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.
基金Fund for Shanxi Key Subjects ConstructionFund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province+3 种基金Cooperative Innovation Center Project of Shanxi Advanced Permanent Magnet Materials and Technology(2016-09)Talent Training Project of Joint Training Base for Graduate Students in Shanxi(2016JD36)Key Team of Scientific and Technological Innovation in Shanxi Province(2013131009)Shanxi Scholarship Council of China(2013-098,2016-092)
基金supports from the National Natural Science Foundation of China(Grant Nos.51201096 and 51474144)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20123108120019)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘In the present work, crystal structure and for- mation mechanism of the secondary phase in Heusler Ni- Mn-Sn-Co materials were investigated using X-ray dif- fraction, scanning/transmission electron microscopy and selected-area electron diffraction techniques. Experimental results showed that the secondary phase presented in both Ni44.1Mn35.1Sn10.8Co10 as-cast bulk alloy and melt-spun ribbon, possessing a face-centered cubic (fcc) NilTSn3-type structure. The secondary phase in the as-cast bulk alloy was resulted from a eutectic reaction after the formation of a primary dendritic flphase during cooling. However in the melt-spun rapidly solidified ribbon, the secondary phase was largely suppressed as nano-precipitates distributed along the grain boundaries, which was attributed to a divorced eutectic reaction. The secondary phase exhibited partial amorphous state due to high local cooling rate.