The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning...The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning electron microscopy after being immersed in different concentrations of H2O2 for 112 h. Surface corrosion products of Ni-Cr alloys were analyzed by photoelectron spectrograph after being immersed in 0% and 30% H2O2. The order of increasing surface roughness of Ni-Cr alloys after being immersed in different concentrations of H2O2 was 0〈3.6%〈10%〈30%. As the concentration of hydrogen peroxide increased, the surface roughness of Ni-Cr alloys increased and the surface morphology showed different degrees of corrosion. According to the XPS results, the corrosion products formed on the outmost surface layer of the studied samples are Ni(OH)2 and BeO.展开更多
The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume ...The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.展开更多
The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositi...The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositing conditions are that the cathode current density is 16 A/dm^2,the plating solution temperature is 30℃ and the pH value is 2.5. The bright, compact coating gained under the optimal conditions has good cohesion and 24.1% Cr content. The results show that the coating is composed of crystalline, the average grain size is 82 nm and the higher the Cr content of coating, the larger the rigidity, and the higher the corrosion resistance. The rigidity of coating reaches 78.6(HR30T) and the passivation area broadens to 1.4 V when the Cr content of coating is 24.1%.展开更多
A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobal...A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.展开更多
The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentrat...The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy. The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy. The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.展开更多
The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A...The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A total of 36 specimens were manufactured (18 of Ni-Cr alloy and 18 of Co-Cr alloy). The specimens were then divided into 3 subgroups (6 specimens each): control;argon-welded;and non-Argon welded. The specimens were cut, laser welded, radiographed and finally tested under tensile strength testing, followed by examination using Scanning Electron Microscopy. The tensile strength of welded specimens was lower than the strength of non-welded specimens, however this difference was not found to be statistically significant. The material factor (Co-Cr alloy or Ni-Cr alloy) has a statistically significant effect on the tensile strength, while the presence or not of the inert gas, as well as the combination of the two factors do not have a statistically significant effect. The laser welding process applied in daily practice (separation of specimen, formation of two cones in contact, aggregation of two cones, filling of the remaining gap by welding) is considered satisfactory in terms of weld strength. The factor of the material, as an independent factor, affects the tensile strength to a statistically significant degree, in contrast to the factor of the presence of inert gas which does not affect to a statistically significant degree.展开更多
Objective To compare the long-term clinical effects of two kinds of crowns and bridges made of porcelain fused to Au-Pt alloy and Ni-Cr alloy. Methods A total of 131 teeth (64 patients) were rehabilitated using porcel...Objective To compare the long-term clinical effects of two kinds of crowns and bridges made of porcelain fused to Au-Pt alloy and Ni-Cr alloy. Methods A total of 131 teeth (64 patients) were rehabilitated using porcelain-fused-to-metal crowns, among which 59 were rehabilitated with Au-Pt alloy metal ceramic crown and 72 with Ni-Cr alloy metal ceramic crown. The porcelain fracture, shade, marginal adaptation, gingival discoloration, and gingival status after finishing restoration and 36 months of follow-up were evaluated. Results After 36 months of restoration, porcelain fused to Au-Pt alloy crown showed better clinical effects than porcelain fused to Ni-Cr alloy crown in shade, marginal adaptation, gingival discoloration, as well as gingival status (all P<0.05). Conclusion The Au-Pt alloy ceramic crown is superior to Ni-Cr alloy ceramic crown in long-term clinical effects.展开更多
Ni-Ti-based shape memory alloys(SMAs)have found widespread use in the last 70 years,but improving their functional stability remains a key quest for more robust and advanced applications.Named for their ability to ret...Ni-Ti-based shape memory alloys(SMAs)have found widespread use in the last 70 years,but improving their functional stability remains a key quest for more robust and advanced applications.Named for their ability to retain their processed shape as a result of a reversible martensitic transformation,SMAs are highly sensitive to compositional variations.Alloying with ternary and quaternary elements to finetune the lattice parameters and the thermal hysteresis of an SMA,therefore,becomes a challenge in materials exploration.Combinatorial materials science allows streamlining of the synthesis process and data management from multiple characterization techniques.In this study,a composition spread of Ni-Ti-Cu-V thin-film library was synthesized by magnetron co-sputtering on a thermally oxidized Si wafer.Composition-dependent phase transformation temperature and microstructure were investigated and determined using high-throughput wavelength dispersive spectroscopy,synchrotron X-ray diffraction,and temperature-dependent resistance measurements.Of the 177 compositions in the materials library,32 were observed to have shape memory effect,of which five had zero or near-zero thermal hysteresis.These compositions provide flexibility in the operating temperature regimes that they can be used in.A phase map for the quaternary system and correlations of functional properties are discussed w让h respect to the local microstructure and composition of the thin-film library.展开更多
Ni-Cr based alloys were prepared by hot-pressing the mixture of strengthening phases Mo, Al, Ti, and lubricant phase MoS2. The hardness, tribological properties as well as the high temperature oxidation properties wer...Ni-Cr based alloys were prepared by hot-pressing the mixture of strengthening phases Mo, Al, Ti, and lubricant phase MoS2. The hardness, tribological properties as well as the high temperature oxidation properties were evaluated, The results show that the strengthening phases can improve the mechanical properties of Ni-Cr based alloy obviously, and the wear and friction properties of Ni-based alloy with strengthening phase can be improved. Its friction coefficient and wear rate rubbed with Al2O3 ceramic disk are about 0.4 and 10 -14m3/(N·m), respectively, and the oxidation process is mainly affected by Cr2O3.展开更多
The effect of RE on crack forming and developing of hot rolled high Ni-Cr alloy cast iron during thermal fatigue test was investigated.It shows that the serviceable life of hot rolled high Ni-Cr alloy cast iron can be...The effect of RE on crack forming and developing of hot rolled high Ni-Cr alloy cast iron during thermal fatigue test was investigated.It shows that the serviceable life of hot rolled high Ni-Cr alloy cast iron can be improved by RE.The number of cycle before fracture was increased by 42%~163%.The optimum of RE addition is 0.05 wt%~0.15wt%.展开更多
Four kinds of Ni-xCr alloy laser cladding layers(x=20,40,60 and 80,wt%)were prepared by high-speed laser cladding technique,and the relationship between microstructure and wear resistance of Ni-Cr alloy laser cladding...Four kinds of Ni-xCr alloy laser cladding layers(x=20,40,60 and 80,wt%)were prepared by high-speed laser cladding technique,and the relationship between microstructure and wear resistance of Ni-Cr alloy laser cladding layers with different Cr contents was investigated.The results show that the four Ni-Cr alloy laser cladding layers all have reticulated dendritic structures.Among them,Ni-20Cr and Ni-40Cr are single-phaseγ-(Ni,Cr)solid solutions,and their wear mechanisms are adhesive wear and abrasive wear.With the increase in Cr content,Ni-60Cr and Ni-80Cr areγ-(Ni,Cr)phase and Cr phase,as well as Cr-rich precipitates,and their wear mechanisms are adhesive wear,abrasive wear and fatigue wear.A moderate increase in Cr content can enhance the hardness and wear resistance of Ni-Cr alloy laser cladding layer.However,excessive addition of Cr results in the precipitation of Cr-rich precipitates.The hardness of these precipitates is 2430.4 MPa,which is lower than the hardness of the Ni-60Cr matrix(4024.86 MPa)and Ni-80Cr matrix(7022.68 MPa).A hardness transition zone exists between the Cr-rich precipitates and the matrix.Cracks are likely to initiate and expand in this zone,leading to deep spalling,which is not conducive to the wear-resistant properties of the laser cladding layer.Ni-80Cr has the highest hardness,but its high Cr content leads to a large number of penetrating cracks and Cr-rich precipitates on the surface,ultimately resulting in the worst wear resistance.Ni-60Cr exhibits the best wear resistance due to its high hardness and dense microstructure.展开更多
Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetr...Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.展开更多
NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group a...NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group and the un-annealed group. A series of tests were made to figure out the reasons lying behind the gap in the TCR between the annealed group and the un-annealed group. UV reflection results show that there is no increase in the concentration of free electrons after annealing. However, the data obtained from XRD reveal that the annealing does not have an obvious influence on the strain of thin films, but really increases the grain size of thin films. Therefore, the grain boundary scattering plays a dominant role in explaining the obvious difference in the TCR. Finally through appropriate methods, a micron-resistor for heating-up with a low TCR value was obtained.展开更多
Different photoluminescence (PL) spectra are observed for rf magnetron sputtered polycrystalline Mg0.25Zn0.75O and Mg0.37Zn0.63O films on silicon substrates when excited by different wavelengths. When the excitation...Different photoluminescence (PL) spectra are observed for rf magnetron sputtered polycrystalline Mg0.25Zn0.75O and Mg0.37Zn0.63O films on silicon substrates when excited by different wavelengths. When the excitation wavelength is 280nm, a UV emission peak at 370nm and a blue peak at 462nm are generated for the Mg0.25Zn0.75O film, and those two peaks for the Mg0.37Zn0.63O film shift to 366nm and 466nm, respectively. The wavelengths of the PL peaks are related to the excitation wavelength. The stronger peak is obtained in the blue band due to a large number of oxygen vacancies caused by excess Zn and Mg atoms, while the weaker peak is obtained in the ultraviolet band.展开更多
The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at consta...The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance.展开更多
Cubic phase MgxZn1-x O/MgO multilayer heterostructures (c-Mgx Zn1-xO/MgO MHs) are grown on Si(100) and quartz substrates by reactive electron beam evaporation at low temperature (250℃). Cross-sectional morpholo...Cubic phase MgxZn1-x O/MgO multilayer heterostructures (c-Mgx Zn1-xO/MgO MHs) are grown on Si(100) and quartz substrates by reactive electron beam evaporation at low temperature (250℃). Cross-sectional morphology observations by field-emission scanning electron microscopy show the legible interfaces of c-MgxZn1-x O/MgO MHs. X-ray diffraction demonstrates that c-MgxZn1-xO/MgO MHs are of highly (100)-oriented. Optical trans- mission investigations of c-Mgx Zn1-x O/MgO MHs on quartz substrates reveal the coexistence of the two phases, c-MgxZn1-xO and MgO. Photoluminescence examination indicates the emergence of deep-ultraviolet emission centred at about 290nm along with the blue shift of the ultraviolet emission from 405nm to 39Gnm when the nominal thickness of c-MgxZn1-xO well layers of MHs is diminished to 3nm, which is probably originated from quantum confinement effect.展开更多
The fabrication of heterostructures of two-dimensional semiconductors with specific bandgaps is an important approach to realizing the full potential of these materials in electronic and optoelectronic devices. Severa...The fabrication of heterostructures of two-dimensional semiconductors with specific bandgaps is an important approach to realizing the full potential of these materials in electronic and optoelectronic devices. Several groups have recently reported the direct growth of lateral and vertical heterostructures based on monolayers of typical semiconducting transition metal dichalcogenides (TMDCs) such as WSe2, MoSe2, WS2, and MoS2. Here, we demonstrate the single-step direct growth of lateral and vertical heterostructures based on bandgap-tunable Mo1-xWxS2 alloy monolayers by the sulfurization of patterned thin films of WO3 and MoO3. These patterned films are capable of generating a wide variety of concentration gradients by the diffusion of transition metals during the crystal growth phase. Under high temperatures, this leads to the formation of monolayer crystals of Mo1-xWxS2 alloys with various compositions and bandgaps, depending on the positions of the crystals on the substrates. Heterostructures of these alloys are obtained through stepwise changes in the ratio of W/Mo within a single domain during low-temperature growth. The stabilization of the monolayer Mo1-xWxS2 alloys, which often degrade even under gentle conditions, was accomplished by coating the alloys with other monolayers. The present findings demonstrate an efficient means of both studying and optimizing the optical and electrical properties of TMDC-based heterostructures to allow use of the materials in future device applications.展开更多
Using first-principles calculations,the structural,electronic,and defect properties of AgInSe_(2)(AIS),AgGaSe_(2)(AGS),and their alloys(AIGS)are systematically studied and compared with their Cu counterparts as potent...Using first-principles calculations,the structural,electronic,and defect properties of AgInSe_(2)(AIS),AgGaSe_(2)(AGS),and their alloys(AIGS)are systematically studied and compared with their Cu counterparts as potential candidates for thin-film solar cell absorbers.The bandgap energies of AIS(1.24 eV)and AGS(1.84 eV)are larger than their Cu counterparts,despite their larger lattice parameters.According to the Shockley-Queisser theory,AIS or AIGS could be more suitable for solar-cell-absorber materials than their Cu counterparts.However,after investigating the band structures and intrinsic defect properties of AIS and AGS,we find that,(i)AIS and AGS have large negative crystal field splitting,thus low density of states near the valence band maximum(VBM);(ii)similar to the Cu counterparts,Ag vacancy(V_(Ag))is the main hole-carrier provider,while In_(Ag)(or Ga_(Ag))serves as the hole-carrier killer in p-type AIS(or AGS).However,because the positions of theVBM and conduction band minimum of AIS(or AGS)are lower than those of Cu In Se_(2)(CIS)[or Cu Ga Se_(2)(CGS)],the compensation of the p-type doping in AIS(or AGS)is more severe.Thus,the p-type doping of AIS(or AIGS)is more difficult than that of CIS(or CIGS),which is consistent with the doping limit rule.To improve the p-type doping of the AIS(or AIGS)as the solar-cell absorber,thus,improve the power conversion efficiency(PCE),the Ag-rich/(In,Ga)-poor/Se-rich growth condition is preferred.Alloy engineering of AIS with AGS can enhance the PCE because it can tune the bandgap energy of the absorber and band alignment at the absorber/buffer interface.More importantly,we suggest that for AIS(or AIGS)solar cell,the traditional buffer material of Cd S is not suitable anymore due to the large conduction band offset between AIS and Cd S.A new buffer layer material with a lower conduction band edge is necessary for better electron transport in AIS(or AIGS)solar cell.展开更多
基金Projects(13ZR1427700,13ZR1427900)supported by the Natural Science Foundation of Shanghai,ChinaProject(51304136)supported by the National Natural Science Foundation of ChinaProjects(Slgl4049,Slgl4050)supported by the Shanghai Education Development Foundation"Selection and Training the Excellent Young College Teacher"Project,China
文摘The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning electron microscopy after being immersed in different concentrations of H2O2 for 112 h. Surface corrosion products of Ni-Cr alloys were analyzed by photoelectron spectrograph after being immersed in 0% and 30% H2O2. The order of increasing surface roughness of Ni-Cr alloys after being immersed in different concentrations of H2O2 was 0〈3.6%〈10%〈30%. As the concentration of hydrogen peroxide increased, the surface roughness of Ni-Cr alloys increased and the surface morphology showed different degrees of corrosion. According to the XPS results, the corrosion products formed on the outmost surface layer of the studied samples are Ni(OH)2 and BeO.
文摘The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.
基金Project (59674025) supported by the National Natural Science Foundation of China
文摘The Ni-Cr alloy electrodepositing technology on iron substrate in the chlorid-sulfate solution and the impacts of main processing parameters on coating composition were studied. The optimal Ni-Cr alloy electrodepositing conditions are that the cathode current density is 16 A/dm^2,the plating solution temperature is 30℃ and the pH value is 2.5. The bright, compact coating gained under the optimal conditions has good cohesion and 24.1% Cr content. The results show that the coating is composed of crystalline, the average grain size is 82 nm and the higher the Cr content of coating, the larger the rigidity, and the higher the corrosion resistance. The rigidity of coating reaches 78.6(HR30T) and the passivation area broadens to 1.4 V when the Cr content of coating is 24.1%.
文摘A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.
文摘The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy. The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy. The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.
文摘The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A total of 36 specimens were manufactured (18 of Ni-Cr alloy and 18 of Co-Cr alloy). The specimens were then divided into 3 subgroups (6 specimens each): control;argon-welded;and non-Argon welded. The specimens were cut, laser welded, radiographed and finally tested under tensile strength testing, followed by examination using Scanning Electron Microscopy. The tensile strength of welded specimens was lower than the strength of non-welded specimens, however this difference was not found to be statistically significant. The material factor (Co-Cr alloy or Ni-Cr alloy) has a statistically significant effect on the tensile strength, while the presence or not of the inert gas, as well as the combination of the two factors do not have a statistically significant effect. The laser welding process applied in daily practice (separation of specimen, formation of two cones in contact, aggregation of two cones, filling of the remaining gap by welding) is considered satisfactory in terms of weld strength. The factor of the material, as an independent factor, affects the tensile strength to a statistically significant degree, in contrast to the factor of the presence of inert gas which does not affect to a statistically significant degree.
文摘Objective To compare the long-term clinical effects of two kinds of crowns and bridges made of porcelain fused to Au-Pt alloy and Ni-Cr alloy. Methods A total of 131 teeth (64 patients) were rehabilitated using porcelain-fused-to-metal crowns, among which 59 were rehabilitated with Au-Pt alloy metal ceramic crown and 72 with Ni-Cr alloy metal ceramic crown. The porcelain fracture, shade, marginal adaptation, gingival discoloration, and gingival status after finishing restoration and 36 months of follow-up were evaluated. Results After 36 months of restoration, porcelain fused to Au-Pt alloy crown showed better clinical effects than porcelain fused to Ni-Cr alloy crown in shade, marginal adaptation, gingival discoloration, as well as gingival status (all P<0.05). Conclusion The Au-Pt alloy ceramic crown is superior to Ni-Cr alloy ceramic crown in long-term clinical effects.
基金The author thanks Tieren Gao,Peer Decker,Alan Savan,and Manfred Wuttig for fruitful discussions.The authors gratefully acknowledge funding support by the National Science Foundation Graduate Research Fellowship Program(DGE 1322106).
文摘Ni-Ti-based shape memory alloys(SMAs)have found widespread use in the last 70 years,but improving their functional stability remains a key quest for more robust and advanced applications.Named for their ability to retain their processed shape as a result of a reversible martensitic transformation,SMAs are highly sensitive to compositional variations.Alloying with ternary and quaternary elements to finetune the lattice parameters and the thermal hysteresis of an SMA,therefore,becomes a challenge in materials exploration.Combinatorial materials science allows streamlining of the synthesis process and data management from multiple characterization techniques.In this study,a composition spread of Ni-Ti-Cu-V thin-film library was synthesized by magnetron co-sputtering on a thermally oxidized Si wafer.Composition-dependent phase transformation temperature and microstructure were investigated and determined using high-throughput wavelength dispersive spectroscopy,synchrotron X-ray diffraction,and temperature-dependent resistance measurements.Of the 177 compositions in the materials library,32 were observed to have shape memory effect,of which five had zero or near-zero thermal hysteresis.These compositions provide flexibility in the operating temperature regimes that they can be used in.A phase map for the quaternary system and correlations of functional properties are discussed w让h respect to the local microstructure and composition of the thin-film library.
文摘Ni-Cr based alloys were prepared by hot-pressing the mixture of strengthening phases Mo, Al, Ti, and lubricant phase MoS2. The hardness, tribological properties as well as the high temperature oxidation properties were evaluated, The results show that the strengthening phases can improve the mechanical properties of Ni-Cr based alloy obviously, and the wear and friction properties of Ni-based alloy with strengthening phase can be improved. Its friction coefficient and wear rate rubbed with Al2O3 ceramic disk are about 0.4 and 10 -14m3/(N·m), respectively, and the oxidation process is mainly affected by Cr2O3.
文摘The effect of RE on crack forming and developing of hot rolled high Ni-Cr alloy cast iron during thermal fatigue test was investigated.It shows that the serviceable life of hot rolled high Ni-Cr alloy cast iron can be improved by RE.The number of cycle before fracture was increased by 42%~163%.The optimum of RE addition is 0.05 wt%~0.15wt%.
文摘Four kinds of Ni-xCr alloy laser cladding layers(x=20,40,60 and 80,wt%)were prepared by high-speed laser cladding technique,and the relationship between microstructure and wear resistance of Ni-Cr alloy laser cladding layers with different Cr contents was investigated.The results show that the four Ni-Cr alloy laser cladding layers all have reticulated dendritic structures.Among them,Ni-20Cr and Ni-40Cr are single-phaseγ-(Ni,Cr)solid solutions,and their wear mechanisms are adhesive wear and abrasive wear.With the increase in Cr content,Ni-60Cr and Ni-80Cr areγ-(Ni,Cr)phase and Cr phase,as well as Cr-rich precipitates,and their wear mechanisms are adhesive wear,abrasive wear and fatigue wear.A moderate increase in Cr content can enhance the hardness and wear resistance of Ni-Cr alloy laser cladding layer.However,excessive addition of Cr results in the precipitation of Cr-rich precipitates.The hardness of these precipitates is 2430.4 MPa,which is lower than the hardness of the Ni-60Cr matrix(4024.86 MPa)and Ni-80Cr matrix(7022.68 MPa).A hardness transition zone exists between the Cr-rich precipitates and the matrix.Cracks are likely to initiate and expand in this zone,leading to deep spalling,which is not conducive to the wear-resistant properties of the laser cladding layer.Ni-80Cr has the highest hardness,but its high Cr content leads to a large number of penetrating cracks and Cr-rich precipitates on the surface,ultimately resulting in the worst wear resistance.Ni-60Cr exhibits the best wear resistance due to its high hardness and dense microstructure.
文摘Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.
文摘NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group and the un-annealed group. A series of tests were made to figure out the reasons lying behind the gap in the TCR between the annealed group and the un-annealed group. UV reflection results show that there is no increase in the concentration of free electrons after annealing. However, the data obtained from XRD reveal that the annealing does not have an obvious influence on the strain of thin films, but really increases the grain size of thin films. Therefore, the grain boundary scattering plays a dominant role in explaining the obvious difference in the TCR. Finally through appropriate methods, a micron-resistor for heating-up with a low TCR value was obtained.
文摘Different photoluminescence (PL) spectra are observed for rf magnetron sputtered polycrystalline Mg0.25Zn0.75O and Mg0.37Zn0.63O films on silicon substrates when excited by different wavelengths. When the excitation wavelength is 280nm, a UV emission peak at 370nm and a blue peak at 462nm are generated for the Mg0.25Zn0.75O film, and those two peaks for the Mg0.37Zn0.63O film shift to 366nm and 466nm, respectively. The wavelengths of the PL peaks are related to the excitation wavelength. The stronger peak is obtained in the blue band due to a large number of oxygen vacancies caused by excess Zn and Mg atoms, while the weaker peak is obtained in the ultraviolet band.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.51571058 and 52171108。
文摘The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance.
基金Supported by the National Natural Science Foundation of China under Grant No 50472058.
文摘Cubic phase MgxZn1-x O/MgO multilayer heterostructures (c-Mgx Zn1-xO/MgO MHs) are grown on Si(100) and quartz substrates by reactive electron beam evaporation at low temperature (250℃). Cross-sectional morphology observations by field-emission scanning electron microscopy show the legible interfaces of c-MgxZn1-x O/MgO MHs. X-ray diffraction demonstrates that c-MgxZn1-xO/MgO MHs are of highly (100)-oriented. Optical trans- mission investigations of c-Mgx Zn1-x O/MgO MHs on quartz substrates reveal the coexistence of the two phases, c-MgxZn1-xO and MgO. Photoluminescence examination indicates the emergence of deep-ultraviolet emission centred at about 290nm along with the blue shift of the ultraviolet emission from 405nm to 39Gnm when the nominal thickness of c-MgxZn1-xO well layers of MHs is diminished to 3nm, which is probably originated from quantum confinement effect.
文摘The fabrication of heterostructures of two-dimensional semiconductors with specific bandgaps is an important approach to realizing the full potential of these materials in electronic and optoelectronic devices. Several groups have recently reported the direct growth of lateral and vertical heterostructures based on monolayers of typical semiconducting transition metal dichalcogenides (TMDCs) such as WSe2, MoSe2, WS2, and MoS2. Here, we demonstrate the single-step direct growth of lateral and vertical heterostructures based on bandgap-tunable Mo1-xWxS2 alloy monolayers by the sulfurization of patterned thin films of WO3 and MoO3. These patterned films are capable of generating a wide variety of concentration gradients by the diffusion of transition metals during the crystal growth phase. Under high temperatures, this leads to the formation of monolayer crystals of Mo1-xWxS2 alloys with various compositions and bandgaps, depending on the positions of the crystals on the substrates. Heterostructures of these alloys are obtained through stepwise changes in the ratio of W/Mo within a single domain during low-temperature growth. The stabilization of the monolayer Mo1-xWxS2 alloys, which often degrade even under gentle conditions, was accomplished by coating the alloys with other monolayers. The present findings demonstrate an efficient means of both studying and optimizing the optical and electrical properties of TMDC-based heterostructures to allow use of the materials in future device applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11991060,12088101,and U1930402)National Supercomputer Center in Tianjin is acknowledged for computational support。
文摘Using first-principles calculations,the structural,electronic,and defect properties of AgInSe_(2)(AIS),AgGaSe_(2)(AGS),and their alloys(AIGS)are systematically studied and compared with their Cu counterparts as potential candidates for thin-film solar cell absorbers.The bandgap energies of AIS(1.24 eV)and AGS(1.84 eV)are larger than their Cu counterparts,despite their larger lattice parameters.According to the Shockley-Queisser theory,AIS or AIGS could be more suitable for solar-cell-absorber materials than their Cu counterparts.However,after investigating the band structures and intrinsic defect properties of AIS and AGS,we find that,(i)AIS and AGS have large negative crystal field splitting,thus low density of states near the valence band maximum(VBM);(ii)similar to the Cu counterparts,Ag vacancy(V_(Ag))is the main hole-carrier provider,while In_(Ag)(or Ga_(Ag))serves as the hole-carrier killer in p-type AIS(or AGS).However,because the positions of theVBM and conduction band minimum of AIS(or AGS)are lower than those of Cu In Se_(2)(CIS)[or Cu Ga Se_(2)(CGS)],the compensation of the p-type doping in AIS(or AGS)is more severe.Thus,the p-type doping of AIS(or AIGS)is more difficult than that of CIS(or CIGS),which is consistent with the doping limit rule.To improve the p-type doping of the AIS(or AIGS)as the solar-cell absorber,thus,improve the power conversion efficiency(PCE),the Ag-rich/(In,Ga)-poor/Se-rich growth condition is preferred.Alloy engineering of AIS with AGS can enhance the PCE because it can tune the bandgap energy of the absorber and band alignment at the absorber/buffer interface.More importantly,we suggest that for AIS(or AIGS)solar cell,the traditional buffer material of Cd S is not suitable anymore due to the large conduction band offset between AIS and Cd S.A new buffer layer material with a lower conduction band edge is necessary for better electron transport in AIS(or AIGS)solar cell.