A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF...A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF expression was derived,and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained.It was found that many factors,such as medium properties,acoustic parameters,eccentricity,and radius ratio of the inner liquid column,affect the acoustic scattering field of the particle,which in turn changes the forces and torque.The acoustic response varies with the particle structures,so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle.The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column.The decrease of the inner liquid density may suppress the high-order resonance peaks,and internal fluid column has less effects on the change in force on composite particle at ka>3,while limited differences exist at ka<3.The axial torque on particles due to geometric asymmetry is closely related to ka and the eccentricity.The distribution of positive and negative force and torque along the axis ka exhibits that composite particle can be manipulated or separated by ultrasound.Our theoretical analysis can provide support for the acoustic manipulation,sorting,and targeting of inhomogeneous particles.展开更多
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e...Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C...A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.展开更多
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ...TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.展开更多
Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 partic...Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 μm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%?0.36% (mole fraction).展开更多
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp...The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.展开更多
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The...In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).展开更多
This study investigates the removal of Congo Red dye from aqueous solution using functionalized generation 3.0 and 5.0 polyamidoamine dendrimer-silica gel composite (G-3PS, G-5PS). Fourier Transform-Infra Red spectros...This study investigates the removal of Congo Red dye from aqueous solution using functionalized generation 3.0 and 5.0 polyamidoamine dendrimer-silica gel composite (G-3PS, G-5PS). Fourier Transform-Infra Red spectroscopy, Brunauer Emmett and Teller, Thermo Gravimetric Analysis, pH at point of zero charge, and scanning electron microscopy measurements have been applied to characterize the synthetic nanohybrid composite, these techniques revealed the successful functionalization of both dendrimer molecules and subsequent immobilization onto silica gel. The implications of varying adsorption parameters such as contact time, initial concentration of adsorbate, temperature and pH on both composites were studied. Experimental data obtained from batch adsorption processes were fitted into two equilibrium isotherms (Langmuir and Freundlich) and 3 kinetic models (Pseudo-First-Order, Pseudo-Second-Order, Intra Particle Diffusion). Adsorption mechanism was mainly governed by film diffusion due to electrostatic interactions between the functionalized dendrimer surface and Congo Red molecules. Thermodynamic parameters illustrate that the adsorption is endothermic and spontaneous. Findings suggest the Nanocomposites (G-3PS and G-5PS) are good adsorbents for the removal of Congo Red dye from aqueous solutions.展开更多
UPR/Al2O3 composite particles were synthesized from unsaturated polyester resin(UPR) and nanometer/ultra-fine Al2O3 powders by means of suspension polymerization.The effects of Al2O3 with two different particle diamet...UPR/Al2O3 composite particles were synthesized from unsaturated polyester resin(UPR) and nanometer/ultra-fine Al2O3 powders by means of suspension polymerization.The effects of Al2O3 with two different particle diameters on the density and hardness of the composite particles during the synthesis were studied.The results show UPR/Al2O3 composite particles synthesized by suspension polymerization are spherical,smooth,with a yield of 60%~75%(wt),and the particle diameters are 140~250μm;Al2O3 can effectively improves the density and hardness of the composite particles;when the contet is the same,effect of ultra-fine Al2O3 on the density and hardness of the composite particles is better than that of nanometer Al2O3;When the mass fraction of Al2O3 is 55%,the maximum hardness of ultra-fine Al2O3 composite particles and nanometer Al2O3 composite particles are 39.42HV and 25.66HV respectively.展开更多
Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particle...Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.展开更多
The distribution of SiC particles in Al-SiC composite can greatly influence the mechanical performances of Al-SiC composite. To realize the homogeneous distribution of SiC particles in stir-casting Al-SiC composite, s...The distribution of SiC particles in Al-SiC composite can greatly influence the mechanical performances of Al-SiC composite. To realize the homogeneous distribution of SiC particles in stir-casting Al-SiC composite, semisolid stir casting of Al-4.25 vol.%SiC composite was conducted using a special electromagneticmechanical stirring equipment made by our team, in which there are three uniformly-distributed blades with a horizontal tilt angle of 25 ° to mechanically raise the SiC particles by creating an upward movement of slurry under electromagnetic stirring. The microstructure of the as-cast Al-SiC composites was observed by Scanning Electron Mcroscopy(SEM). The volume fraction of SiC particles was measured by image analysis using the Quantimet 520 Image Processing and Analysis System. The tensile strength of the Al-4.25 vol.%SiC composites was measured by tensile testing. Results show that the Al-4.25 vol.%SiC composites with the homogeneous distrbutin of SiC particles can be obtained by the electromagnetic-mechanical stirring casting with the speed of 300 and 600 r·min-1 at 620 °C. The differences between the volume fraction of Si C particles at the top of ingot and that at the bottom are both ~0.04 vol.% with the stirring speed of 300 and 600 r·min-1, which are so small that the distribution of SiC particles can be seen as the homogeneous. The tensile strength of the Al matrix is enhanced by 51.2% due to the uniformly distributed SiC particles. The porosity of the composite mainly results from the solidification shrinkage of slurry and it is less than 0.04 vol.%.展开更多
Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structura...Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.展开更多
Lanthanum-doped muscovite(MC) composite particles(hereinafter abbreviated as La-MC) were prepared by the mechanical solid-state-chemistry-reaction method, followed by surface modification with oleic acid. The microstr...Lanthanum-doped muscovite(MC) composite particles(hereinafter abbreviated as La-MC) were prepared by the mechanical solid-state-chemistry-reaction method, followed by surface modification with oleic acid. The microstructure of materials was characterized by SEM, XRD, EDS and FTIR. Furthermore, the friction-reduction and anti-wear properties of MC and La-MC as lubricant additives in lithium grease were evaluated using a four-ball friction and wear tester. The results showed that La(OH)_3 nanoparticles were coated on the surface of muscovite. Both MC and La-MC can effectively improve the friction-reduction and anti-wear properties of lithium grease and La-MC presents better tribological properties than MC. The excellent tribological properties of La-MC can be attributed to the formation of the adsorbed La-MC film and the chemical reaction film mainly composed of Fe_2O_3 and SiO_2 on the worn surface, as well as the catalysis of lanthanum element during the friction process.展开更多
2024 Al matrix composite reinforced by SiC particles with 45% volume fraction and 1 um diameter was successfully fabricated by squeeze-exhaust casting method. The aging behavior of SiCp/2024AI composite at four temper...2024 Al matrix composite reinforced by SiC particles with 45% volume fraction and 1 um diameter was successfully fabricated by squeeze-exhaust casting method. The aging behavior of SiCp/2024AI composite at four temperatures was investigated and compared to 2024 alloy. It was found that the addition of high volume fraction SiC particles does not alter the aging sequence, but it significantly accelerates the kinetics of precipitation in the composite matrices. Therefore, the aging peak of the composite appears earlier than that of 2024AI alloy. This is attributed to the decrease in the activation energy for the precipitate formation and the increase in the precipitate growth rate due to the high density dislocations in the composite with high volume fraction particles. The high density dislocations, as preferential nucleation sites for precipitates, bring about the tiny and dense precipitates in the composite.展开更多
The behavior of ceramic particles at the solid/liquid interface and the distribution of particles in metallic matrix composites was studied with a zone unidirectional solidification method. Two kinds of partice disper...The behavior of ceramic particles at the solid/liquid interface and the distribution of particles in metallic matrix composites was studied with a zone unidirectional solidification method. Two kinds of partice dispersed composites, Al 2O 3P /Al 12.6%Si Sr and Al 2O 3P /Al 12.6%Si Sr Ca containing Al 2O 3 particles in volume fraction 2%~5% were used. In the Al 2O 3P /Al Si Sr composites, the particles were pushed by the solidifying front, and did not uniformly distribute in the solid. But in the Al 2O 3P /Al Si Sr Ca composites, the particles were engulfed by the solidifying front and uniformly distributed in the solid. The particles engulfing into the solid was realized only by Sr and Ca addition at the same time. As the interfacial energy between solid and particle was decreased in this case, the Al 2O 3 particles acted as the substrates of heterogeneous nucleation for the Si phases, which made the particles to be engulfed.展开更多
Mg matrix composites were often reinforced by non-deformable ceramic particles.In this paper,a novel Mg matrix composite reinforced with deformable TC4(Ti-6Al-4 V)particles was fabricated and then extruded.The evoluti...Mg matrix composites were often reinforced by non-deformable ceramic particles.In this paper,a novel Mg matrix composite reinforced with deformable TC4(Ti-6Al-4 V)particles was fabricated and then extruded.The evolutions of microstructure and mechanical properties of the composite during hot extrusion were investigated.Hoi extrusion refined giains and eliminated the segregation of TC4 particles.TC4 particles,as deformable particles,stimulated the nucleation of dynamic recrystallization during extrusion.However,since the deformation of TC4 particles partly released the stress concentrations around them,the recrystallized grains are just slightly smaller around TC4 particles than that away from them,which is evidently different from the case in Mg matrix composites reinforced by non-deformable ceramic particles.Compared with AZ91 matrix composites reinforced by SiC particles,the present composite possesses the superior comprehensive mechanical properties,which are attributed to not only the strong interfacial bonds between TC4p and matrix but also the deformability of TC4 particles.展开更多
Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of double monomers. The composite particles formation mechanism was investigated. The effects of composite ...Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of double monomers. The composite particles formation mechanism was investigated. The effects of composite particles on the mechanical properties of nano-CaCO3-ABS (acrylonitrile-butadiene-styrene copolymer) composite material were studied. It was validated that the composite particles are made up of the nano-calcium carbonate cores and the shells of alternating copolymers of butyl acrylate (BA) and styrene (St). The shells are chemically grafted and physically wrapped on the surface of nano-calcium carbonate particles. When the composite particles were filled in ABS matrix, the CaCO3 particles are homogeneously dispersed in the composite material as nanoscales. The impact strength of the composite material is obviously enhanced after filling appropriate amounts of composite particles. It can be concluded that the soapless emulsion polymerization of double monomers is an effective method for nano-CaCO3 surface treatment. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and...Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.展开更多
A novel liquid settling method was investigated and applied to fabricate TC4 spherical particle reinforced AZ91 alloy matrix composites.This method was called liquid state settling technique in which TC4 particles wou...A novel liquid settling method was investigated and applied to fabricate TC4 spherical particle reinforced AZ91 alloy matrix composites.This method was called liquid state settling technique in which TC4 particles would settle down under the force of gravity.High volume fraction(50%)particle reinforced AZ91 composites could be easily obtained via this novel method.This is difficult to achieve for other traditional liquid fabrication methods.In addition,there was a good dispersion of TC4 particles in the AZ91 matrix and no clusters were found,which indicate that this method was feasible.Interfacial reaction occurred and the reaction product was confirmed to be Al2Ti.Three kinds of pre-dispersion technologies were used before the settling process and different interfacial microstructures were found.Theoretical calculation and experimental results both indicated that the interfacial product which was embedded in the matrix strengthened the composites and improved the tensile strength.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12374441 and 11974232)the Fund from Yulin Science and Technology Bureau(Grant No.CXY-2022-178).
文摘A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF expression was derived,and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained.It was found that many factors,such as medium properties,acoustic parameters,eccentricity,and radius ratio of the inner liquid column,affect the acoustic scattering field of the particle,which in turn changes the forces and torque.The acoustic response varies with the particle structures,so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle.The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column.The decrease of the inner liquid density may suppress the high-order resonance peaks,and internal fluid column has less effects on the change in force on composite particle at ka>3,while limited differences exist at ka<3.The axial torque on particles due to geometric asymmetry is closely related to ka and the eccentricity.The distribution of positive and negative force and torque along the axis ka exhibits that composite particle can be manipulated or separated by ultrasound.Our theoretical analysis can provide support for the acoustic manipulation,sorting,and targeting of inhomogeneous particles.
基金supported by National Natural Science Foundation of China(No.51971101)Science and Technology Development Program of Jilin Province,China(20230201146G X)Exploration Foundation of State Key Laboratory of Automotive Simulation and Control(asclzytsxm-202015)。
文摘Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
基金Projects (50832004, 51202194) supported by National Natural Science Foundation of ChinaProject (11-BZ-2012) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China+1 种基金Project (T201107) supported by Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, ChinaProject (B08040) supported by 111 Project of China
文摘A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.
文摘TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.
基金Project(2009CC010)supported by the Application Basic Research Foundation of Yunnan Province,ChinaProject(51264037)supported by the National Natural Science Foundation of China
文摘Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 μm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%?0.36% (mole fraction).
基金the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.
基金Funded by the Youth Backbone Teacher Training Plan in University of Henan Province(No.21220028)Science and Technology Research Project of Henan Province(No.242102321066)+2 种基金Natural Science Foundation of Henan Province(No.232300420312)Henan University of Technology Young Backbone Teacher Training Plan(No.21421260)the Innovation Training Program for College Students in Henan Province(No.202310463046)。
文摘In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).
文摘This study investigates the removal of Congo Red dye from aqueous solution using functionalized generation 3.0 and 5.0 polyamidoamine dendrimer-silica gel composite (G-3PS, G-5PS). Fourier Transform-Infra Red spectroscopy, Brunauer Emmett and Teller, Thermo Gravimetric Analysis, pH at point of zero charge, and scanning electron microscopy measurements have been applied to characterize the synthetic nanohybrid composite, these techniques revealed the successful functionalization of both dendrimer molecules and subsequent immobilization onto silica gel. The implications of varying adsorption parameters such as contact time, initial concentration of adsorbate, temperature and pH on both composites were studied. Experimental data obtained from batch adsorption processes were fitted into two equilibrium isotherms (Langmuir and Freundlich) and 3 kinetic models (Pseudo-First-Order, Pseudo-Second-Order, Intra Particle Diffusion). Adsorption mechanism was mainly governed by film diffusion due to electrostatic interactions between the functionalized dendrimer surface and Congo Red molecules. Thermodynamic parameters illustrate that the adsorption is endothermic and spontaneous. Findings suggest the Nanocomposites (G-3PS and G-5PS) are good adsorbents for the removal of Congo Red dye from aqueous solutions.
文摘UPR/Al2O3 composite particles were synthesized from unsaturated polyester resin(UPR) and nanometer/ultra-fine Al2O3 powders by means of suspension polymerization.The effects of Al2O3 with two different particle diameters on the density and hardness of the composite particles during the synthesis were studied.The results show UPR/Al2O3 composite particles synthesized by suspension polymerization are spherical,smooth,with a yield of 60%~75%(wt),and the particle diameters are 140~250μm;Al2O3 can effectively improves the density and hardness of the composite particles;when the contet is the same,effect of ultra-fine Al2O3 on the density and hardness of the composite particles is better than that of nanometer Al2O3;When the mass fraction of Al2O3 is 55%,the maximum hardness of ultra-fine Al2O3 composite particles and nanometer Al2O3 composite particles are 39.42HV and 25.66HV respectively.
基金This work was supported by the Natural Science Foundation of Liaoning Province, China under grant No. 20032007.
文摘Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.
基金financially supported by the Beijing Natural Science Foundation(No.2162036)
文摘The distribution of SiC particles in Al-SiC composite can greatly influence the mechanical performances of Al-SiC composite. To realize the homogeneous distribution of SiC particles in stir-casting Al-SiC composite, semisolid stir casting of Al-4.25 vol.%SiC composite was conducted using a special electromagneticmechanical stirring equipment made by our team, in which there are three uniformly-distributed blades with a horizontal tilt angle of 25 ° to mechanically raise the SiC particles by creating an upward movement of slurry under electromagnetic stirring. The microstructure of the as-cast Al-SiC composites was observed by Scanning Electron Mcroscopy(SEM). The volume fraction of SiC particles was measured by image analysis using the Quantimet 520 Image Processing and Analysis System. The tensile strength of the Al-4.25 vol.%SiC composites was measured by tensile testing. Results show that the Al-4.25 vol.%SiC composites with the homogeneous distrbutin of SiC particles can be obtained by the electromagnetic-mechanical stirring casting with the speed of 300 and 600 r·min-1 at 620 °C. The differences between the volume fraction of Si C particles at the top of ingot and that at the bottom are both ~0.04 vol.% with the stirring speed of 300 and 600 r·min-1, which are so small that the distribution of SiC particles can be seen as the homogeneous. The tensile strength of the Al matrix is enhanced by 51.2% due to the uniformly distributed SiC particles. The porosity of the composite mainly results from the solidification shrinkage of slurry and it is less than 0.04 vol.%.
基金Project(2008BB4177) supported by the Natural Science Foundation of Chongqing,China
文摘Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.
基金supported by the Postdoctoral Science Foundation of China(XM2013018)Logistics Project Foundation of China(Oil 20070209)
文摘Lanthanum-doped muscovite(MC) composite particles(hereinafter abbreviated as La-MC) were prepared by the mechanical solid-state-chemistry-reaction method, followed by surface modification with oleic acid. The microstructure of materials was characterized by SEM, XRD, EDS and FTIR. Furthermore, the friction-reduction and anti-wear properties of MC and La-MC as lubricant additives in lithium grease were evaluated using a four-ball friction and wear tester. The results showed that La(OH)_3 nanoparticles were coated on the surface of muscovite. Both MC and La-MC can effectively improve the friction-reduction and anti-wear properties of lithium grease and La-MC presents better tribological properties than MC. The excellent tribological properties of La-MC can be attributed to the formation of the adsorbed La-MC film and the chemical reaction film mainly composed of Fe_2O_3 and SiO_2 on the worn surface, as well as the catalysis of lanthanum element during the friction process.
文摘2024 Al matrix composite reinforced by SiC particles with 45% volume fraction and 1 um diameter was successfully fabricated by squeeze-exhaust casting method. The aging behavior of SiCp/2024AI composite at four temperatures was investigated and compared to 2024 alloy. It was found that the addition of high volume fraction SiC particles does not alter the aging sequence, but it significantly accelerates the kinetics of precipitation in the composite matrices. Therefore, the aging peak of the composite appears earlier than that of 2024AI alloy. This is attributed to the decrease in the activation energy for the precipitate formation and the increase in the precipitate growth rate due to the high density dislocations in the composite with high volume fraction particles. The high density dislocations, as preferential nucleation sites for precipitates, bring about the tiny and dense precipitates in the composite.
文摘The behavior of ceramic particles at the solid/liquid interface and the distribution of particles in metallic matrix composites was studied with a zone unidirectional solidification method. Two kinds of partice dispersed composites, Al 2O 3P /Al 12.6%Si Sr and Al 2O 3P /Al 12.6%Si Sr Ca containing Al 2O 3 particles in volume fraction 2%~5% were used. In the Al 2O 3P /Al Si Sr composites, the particles were pushed by the solidifying front, and did not uniformly distribute in the solid. But in the Al 2O 3P /Al Si Sr Ca composites, the particles were engulfed by the solidifying front and uniformly distributed in the solid. The particles engulfing into the solid was realized only by Sr and Ca addition at the same time. As the interfacial energy between solid and particle was decreased in this case, the Al 2O 3 particles acted as the substrates of heterogeneous nucleation for the Si phases, which made the particles to be engulfed.
基金This work was supported by“‘National Key R&D Program of China’”2017YFB0703100)“National Natural Science Foundation of China”(Grant Nos.51471059 and 51671066),Key Laboratory of Superlight Materials&Surface Technology(Harbin Engineering University),Ministry of Education and Key Laboratory of Lightweight and High Strength Struc-tural Materials of Jiangxi Province.
文摘Mg matrix composites were often reinforced by non-deformable ceramic particles.In this paper,a novel Mg matrix composite reinforced with deformable TC4(Ti-6Al-4 V)particles was fabricated and then extruded.The evolutions of microstructure and mechanical properties of the composite during hot extrusion were investigated.Hoi extrusion refined giains and eliminated the segregation of TC4 particles.TC4 particles,as deformable particles,stimulated the nucleation of dynamic recrystallization during extrusion.However,since the deformation of TC4 particles partly released the stress concentrations around them,the recrystallized grains are just slightly smaller around TC4 particles than that away from them,which is evidently different from the case in Mg matrix composites reinforced by non-deformable ceramic particles.Compared with AZ91 matrix composites reinforced by SiC particles,the present composite possesses the superior comprehensive mechanical properties,which are attributed to not only the strong interfacial bonds between TC4p and matrix but also the deformability of TC4 particles.
基金the National Natural Science Foundation of China(No.20236020,20325621)the National R & D Program of China(No.2001BA310A01).
文摘Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of double monomers. The composite particles formation mechanism was investigated. The effects of composite particles on the mechanical properties of nano-CaCO3-ABS (acrylonitrile-butadiene-styrene copolymer) composite material were studied. It was validated that the composite particles are made up of the nano-calcium carbonate cores and the shells of alternating copolymers of butyl acrylate (BA) and styrene (St). The shells are chemically grafted and physically wrapped on the surface of nano-calcium carbonate particles. When the composite particles were filled in ABS matrix, the CaCO3 particles are homogeneously dispersed in the composite material as nanoscales. The impact strength of the composite material is obviously enhanced after filling appropriate amounts of composite particles. It can be concluded that the soapless emulsion polymerization of double monomers is an effective method for nano-CaCO3 surface treatment. 2008 University of Science and Technology Beijing. All rights reserved.
基金financial support from the National Key Fundamental Research and Development Project of China (2014CB644002)。
文摘Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.
基金the National Natural Science Foundation of China(Grant No.51471059).
文摘A novel liquid settling method was investigated and applied to fabricate TC4 spherical particle reinforced AZ91 alloy matrix composites.This method was called liquid state settling technique in which TC4 particles would settle down under the force of gravity.High volume fraction(50%)particle reinforced AZ91 composites could be easily obtained via this novel method.This is difficult to achieve for other traditional liquid fabrication methods.In addition,there was a good dispersion of TC4 particles in the AZ91 matrix and no clusters were found,which indicate that this method was feasible.Interfacial reaction occurred and the reaction product was confirmed to be Al2Ti.Three kinds of pre-dispersion technologies were used before the settling process and different interfacial microstructures were found.Theoretical calculation and experimental results both indicated that the interfacial product which was embedded in the matrix strengthened the composites and improved the tensile strength.