After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bo...After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.展开更多
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com...Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.展开更多
In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ...In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating...An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating. The deposition mechanism of the electroless Ni-P plating on AZ31 Mg alloy was studied by OCP curve, scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). The process of electroless Ni-P plating contains the coating formation stage and the coating growth stage. The formation stage includes three procedures, i.e., the nucleation and growth of Ni crystallites, the extension of the coating in two-dimensional (2D) direction and the coalescence of the coating along three-dimensional (3D) direction. SEM investigations demonstrate that the spherical nodules of the Ni-P coating are not only formed during the coating growth stage, but also generated in the initial deposition stage of electroless Ni-P plating. The variation of the coating rates at different deposition stages corresponds to the deposition mechanism of their respective deposition stage.展开更多
The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and...The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.展开更多
An environmentally friendly method for synthesizing a dawsonite conversion film was developed to improve the corrosion resistance of AZ31 Mg alloy. The film was prepared by two steps: the AZ31 alloy was first immerse...An environmentally friendly method for synthesizing a dawsonite conversion film was developed to improve the corrosion resistance of AZ31 Mg alloy. The film was prepared by two steps: the AZ31 alloy was first immersed in an Al 2 (SO 4 ) 3 solution venting CO 2 gas to form a precursor film, and then the precursor film was treated in a Na 2 CO 3 solution dissolved with Al to obtain the dawsonite film. The surface morphology of the conversion film was observed with an environmental scanning electronic microscope. The chemical composition of the conversion film was analyzed by energy dispersive X-ray spectroscopy and X-ray diffractometry. Electrochemical and immersion tests were carried out to evaluate the protection effect of the conversion film on AZ31 alloy. There are some network-like cracks on the surface of the film. The conversion film is mainly composed of dawsonite NaAlCO 3 (OH) 2 , Al(OH) 3 and Al 5 (OH) 13 (CO 3 )·5H 2 O, which can increase the corrosion potential and reduce the corrosion current density of the Mg substrate. After immersion tests, the film almost keeps intact, except for the localized narrow areas with several corrosion pits, while the bare material undergoes serious general corrosion. It is indicated that the dawsonite film can provide good protection to the magnesium alloy.展开更多
A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, p...A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, phase structure and its corrosion resistance were studied. The effects of film-forming temperature and free acid on corrosion resistance, microstructure and electrochemical behavior of the film were discussed. The results indicate that the corrosion resistance of AZ31 with the phosphate film was better than blank AZ31 substrate, which was most attributed to the great inhibitive action on the anodic dissolution and cathodic hydrogen evolution of the film.展开更多
The electroless Ni-P coatings on AZ91 D magnesium alloy substrate were prepared using the acidic hypophosphite-reduced electroless nickel bath containing the novel ternary ligand system. The results indicate that the ...The electroless Ni-P coatings on AZ91 D magnesium alloy substrate were prepared using the acidic hypophosphite-reduced electroless nickel bath containing the novel ternary ligand system. The results indicate that the deposition rate varies with the ternary ligand concentration in plating solution. The structural and morphological characteristics of the coatings were analyzed by XRD and SEM. The anticorrosion properties of the Ni-P coatings were evaluated in 3.5% NaCl solution by electrochemical impedance and potentiodynamic polarization methods. The amount of ternary ligands in electroless plating bath has an significant effect on the surface morphology and structure of Ni-P coatings. The decrease of crystallization temperature and increase of crystallization heat of all the deposits with an increase in ternary ligand concentration are found by DSC measurements. The coating obtained with 0.035 mol/L ternary ligand additive in plating bath can offer a better surface homogeneity and improve corrosion resistance.展开更多
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t...The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.展开更多
The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melt...The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melted in air. The burning temper ature increases with the increasing of cerium. The structure and chemical compos itions of the surface oxide film were investigated by XRD and Auger electron spe ctrometry(AES). The results of XRD indicate that the oxide film of the surface o f ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, M g17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AE S depth profile analysis shows that the oxide film can be divided into three lay ers. The outside layer is mainly made up of magnesia, the middle layer, which co nsists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. T hermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.展开更多
The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such...The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...展开更多
Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morpholog...Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.展开更多
Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scann...Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.展开更多
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte...Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.展开更多
Micro-arc oxidation(MAO)is one of the promising methods to improve the corrosion resistance of magnesium alloys.However,there are plenty of micro-pores in the traditional MAO films,deteriorating their protection prope...Micro-arc oxidation(MAO)is one of the promising methods to improve the corrosion resistance of magnesium alloys.However,there are plenty of micro-pores in the traditional MAO films,deteriorating their protection property.A novel self-sealing pore MAO film was developed in this paper.The morphologies and chemical composition of the film were detected by scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDX).The corrosion behavior was investigated by electrochemical and salt spray tests.The possible film formation and corrosion mechanisms were proposed.The self-sealing pore film presents a blue appearance.Most of the micro-pores in the surface of the film are sealed during the film formation process.The chemical composition of the film mainly contains Mg,O,Ti,F and P.The self-sealing pore film exhibits better corrosion resistance compared with the traditional silicate film.Especially,the self-sealing pore film keeps intact after salt spray test for 2000 h,which can be attributed to its high compactness.展开更多
To study the mechanism of formation and inhibition of Ce conversion films on Al 2024-T3 alloy, scanning microreference electrode technique (SMRE) is used to probe the potential map on Al 2024-T3 in CeCl 3 solution, t...To study the mechanism of formation and inhibition of Ce conversion films on Al 2024-T3 alloy, scanning microreference electrode technique (SMRE) is used to probe the potential map on Al 2024-T3 in CeCl 3 solution, the localized corrosion of Al alloy decreases with immersion time and disappears finally, which results from the competition of Cl - aggression and Ce 3+ inhibition on alloy surface. The results of X-ray photoelectron spectroscopy (XPS) indicate that the Ce conversion films consist of Al 2O 3, CeO 2 and Ce 2O 3(Ce(OH) 3), and CeO 2/Ce 2O 3 ratio decreases with the immersion time. When a critical pH for Ce(OH) 3 formation was reached, Ce(OH) 3 will precipitate on the micro cathodic area on alloy surface. Consequently, H 2O 2, the product of the catholic reaction will oxidize a part of Ce(OH) 3 to CeO 2, which appears a better corrosion resistance for Al alloys.展开更多
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main compos...In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.展开更多
Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduct...Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduction of Co^2+ is an irreversible process. Gd^3+ cannot be reduced alone, but it can be inductively co-deposited with Co^2+. Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential. The content of Gd was analyzed using an inductively coupled plasma emission spectrometer (ICPES), and the microstructure was observed by scanning electron micrograph (SEM). The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere, and then were investigated by XRD. The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM). The experimental results reveal that the deposited Gd-Co alloy films are amorphous, while the annealing causes the samples to change from amorphous to polycrystalline, thus enhancing their magnetocrystalline anisotropy and coercivity. Moreover, the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.展开更多
High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were us...High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.展开更多
基金Project(2014DFA50860)supported by International Science&Technology Cooperation Program of China
文摘After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.
基金Funded by the National Natural Science Foundation of China(No.52071252)the Key Research and Development Plan of Shaanxi Province Industrial Project(Nos.2021GY-208,2022GY-407,and 2021ZDLSF03-11)the China Postdoctoral Science Foundation(No.2020M683670XB)。
文摘Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.
基金Project(51241001) supported by the National Natural Science Foundation of ChinaProject(ZR2011EMM004) supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(TS20110828) supported by Taishan Scholarship Project of Shandong Province,ChinaProject(2014TDJH104) supported by SDUST Research Fund,Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources of Shandong Province,China
文摘In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
文摘An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating. The deposition mechanism of the electroless Ni-P plating on AZ31 Mg alloy was studied by OCP curve, scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). The process of electroless Ni-P plating contains the coating formation stage and the coating growth stage. The formation stage includes three procedures, i.e., the nucleation and growth of Ni crystallites, the extension of the coating in two-dimensional (2D) direction and the coalescence of the coating along three-dimensional (3D) direction. SEM investigations demonstrate that the spherical nodules of the Ni-P coating are not only formed during the coating growth stage, but also generated in the initial deposition stage of electroless Ni-P plating. The variation of the coating rates at different deposition stages corresponds to the deposition mechanism of their respective deposition stage.
文摘The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.
基金Project(50901082)supported by the National Natural Science Foundation of China
文摘An environmentally friendly method for synthesizing a dawsonite conversion film was developed to improve the corrosion resistance of AZ31 Mg alloy. The film was prepared by two steps: the AZ31 alloy was first immersed in an Al 2 (SO 4 ) 3 solution venting CO 2 gas to form a precursor film, and then the precursor film was treated in a Na 2 CO 3 solution dissolved with Al to obtain the dawsonite film. The surface morphology of the conversion film was observed with an environmental scanning electronic microscope. The chemical composition of the conversion film was analyzed by energy dispersive X-ray spectroscopy and X-ray diffractometry. Electrochemical and immersion tests were carried out to evaluate the protection effect of the conversion film on AZ31 alloy. There are some network-like cracks on the surface of the film. The conversion film is mainly composed of dawsonite NaAlCO 3 (OH) 2 , Al(OH) 3 and Al 5 (OH) 13 (CO 3 )·5H 2 O, which can increase the corrosion potential and reduce the corrosion current density of the Mg substrate. After immersion tests, the film almost keeps intact, except for the localized narrow areas with several corrosion pits, while the bare material undergoes serious general corrosion. It is indicated that the dawsonite film can provide good protection to the magnesium alloy.
基金Projects (2011CL08, 2011CL01) supported by Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province, ChinaProject (2011RC02) supported by Talent Introduction Funds of Sichuan University of ScienceProject (12ZA261) supported by Key Project of Education Department of Sichuan Province, China
文摘A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, phase structure and its corrosion resistance were studied. The effects of film-forming temperature and free acid on corrosion resistance, microstructure and electrochemical behavior of the film were discussed. The results indicate that the corrosion resistance of AZ31 with the phosphate film was better than blank AZ31 substrate, which was most attributed to the great inhibitive action on the anodic dissolution and cathodic hydrogen evolution of the film.
基金Project(21073027)supported by the National Natural Science Foundation of ChinaProject(DUT10LK26)supported by the Fundamental Research Funds for the Central Universities of China
文摘The electroless Ni-P coatings on AZ91 D magnesium alloy substrate were prepared using the acidic hypophosphite-reduced electroless nickel bath containing the novel ternary ligand system. The results indicate that the deposition rate varies with the ternary ligand concentration in plating solution. The structural and morphological characteristics of the coatings were analyzed by XRD and SEM. The anticorrosion properties of the Ni-P coatings were evaluated in 3.5% NaCl solution by electrochemical impedance and potentiodynamic polarization methods. The amount of ternary ligands in electroless plating bath has an significant effect on the surface morphology and structure of Ni-P coatings. The decrease of crystallization temperature and increase of crystallization heat of all the deposits with an increase in ternary ligand concentration are found by DSC measurements. The coating obtained with 0.035 mol/L ternary ligand additive in plating bath can offer a better surface homogeneity and improve corrosion resistance.
基金Project (SBZDPY-11-17) supported by the Fund on Key Laboratory Project for Hydrodynamic Force, Ministry of Education, China Project (SZD0502-09-0) supported by Key Disciplines of Materials Processing Engineering of Sichuan Province, China
文摘The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.
文摘The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melted in air. The burning temper ature increases with the increasing of cerium. The structure and chemical compos itions of the surface oxide film were investigated by XRD and Auger electron spe ctrometry(AES). The results of XRD indicate that the oxide film of the surface o f ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, M g17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AE S depth profile analysis shows that the oxide film can be divided into three lay ers. The outside layer is mainly made up of magnesia, the middle layer, which co nsists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. T hermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.
基金supported by 863 Project of Ministry of Science and Technology of China (2006AA03Z510)the National Natural Science Foundation of China (50871033)+1 种基金the Scientific Technology Project of Heilongjiang Province (GC06A212)the fund from Harbin Municipal Science & Technology Bureau (2006PFXXG006)
文摘The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...
基金Project supported by the Science and Technology Foundation of Sci. & Tec. Office of Qinhuangdao City (200507)
文摘Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.
文摘Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.
文摘Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.
基金financial support by the National Natural Science Foundation of China(No.51171198)National Key Basic Research Program of China(No.2013CB632205)the International Science&Technology Cooperation Program of China(2011DFA50904).
文摘Micro-arc oxidation(MAO)is one of the promising methods to improve the corrosion resistance of magnesium alloys.However,there are plenty of micro-pores in the traditional MAO films,deteriorating their protection property.A novel self-sealing pore MAO film was developed in this paper.The morphologies and chemical composition of the film were detected by scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDX).The corrosion behavior was investigated by electrochemical and salt spray tests.The possible film formation and corrosion mechanisms were proposed.The self-sealing pore film presents a blue appearance.Most of the micro-pores in the surface of the film are sealed during the film formation process.The chemical composition of the film mainly contains Mg,O,Ti,F and P.The self-sealing pore film exhibits better corrosion resistance compared with the traditional silicate film.Especially,the self-sealing pore film keeps intact after salt spray test for 2000 h,which can be attributed to its high compactness.
文摘To study the mechanism of formation and inhibition of Ce conversion films on Al 2024-T3 alloy, scanning microreference electrode technique (SMRE) is used to probe the potential map on Al 2024-T3 in CeCl 3 solution, the localized corrosion of Al alloy decreases with immersion time and disappears finally, which results from the competition of Cl - aggression and Ce 3+ inhibition on alloy surface. The results of X-ray photoelectron spectroscopy (XPS) indicate that the Ce conversion films consist of Al 2O 3, CeO 2 and Ce 2O 3(Ce(OH) 3), and CeO 2/Ce 2O 3 ratio decreases with the immersion time. When a critical pH for Ce(OH) 3 formation was reached, Ce(OH) 3 will precipitate on the micro cathodic area on alloy surface. Consequently, H 2O 2, the product of the catholic reaction will oxidize a part of Ce(OH) 3 to CeO 2, which appears a better corrosion resistance for Al alloys.
基金Our work is supported by the Natural Science Fund of Jiangsu Province(BK20001414).
文摘In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.
基金financially supported by the Science Foundation of the Educational Department of Fujian Prov-ince (No. 2008F5021)the Natural Science Foundation of Fujian Province (No. A0510013)the National Natural Science Foundation of China (No. 60676055)
文摘Gd-Co alloy films were synthesized by potentiostatic electrolysis on Cu substrates in urea-acetamide-NaBr-KBr melt at 353 K. The electroreduction of Co^2+ and Gd^3+ was investigated by cyclic voltammetry. The reduction of Co^2+ is an irreversible process. Gd^3+ cannot be reduced alone, but it can be inductively co-deposited with Co^2+. Both the Gd content and microstructure of the prepared Gd-Co alloy films can be controlled by the deposited potential. The content of Gd was analyzed using an inductively coupled plasma emission spectrometer (ICPES), and the microstructure was observed by scanning electron micrograph (SEM). The films were crystallized by heat-treatment at 823 K for 30 s in Ar atmosphere, and then were investigated by XRD. The hysteresis loops of the Gd-Co alloy films were measured by a vibrating sample magnetometer (VSM). The experimental results reveal that the deposited Gd-Co alloy films are amorphous, while the annealing causes the samples to change from amorphous to polycrystalline, thus enhancing their magnetocrystalline anisotropy and coercivity. Moreover, the magnetic properties of the Gd-Co alloy films depend strongly on the Gd content.
基金financially supported by the Special Foundation of the Shanghai Education Commission for Nano-Materials Research (0852nm01400)Shanghai Leading Academic Discipline Project (J51402)
文摘High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.