期刊文献+
共找到29,858篇文章
< 1 2 250 >
每页显示 20 50 100
Correction: Surface Patterning of Metal ZincElectrode with an In-Region Zincophilic Interfacefor High-Rate and Long-Cycle-Life Zinc MetalAnode
1
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova-Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期456-457,共2页
Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Mater... Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany. 展开更多
关键词 CORRECTION ZINC electrode
下载PDF
Spinal intradural electrodes: opportunities, challenges and translation to the clinic
2
作者 Bruce Harland Chien Yew Kow Darren Svirskis 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期503-504,共2页
Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal c... Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018). 展开更多
关键词 STIMULATION electrodeS utilizing
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
3
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 In-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER Zinc-ion batteries
下载PDF
Dimethylamine oxalate manipulating CsPbI_(3) perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells
4
作者 Wenran Wang Xin Peng +7 位作者 Jianxin Zhang Jiage Lin Rong Huang Guizhi Zhang Huishi Guo Zhenxiao Pan Xinhua Zhong Huashang Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期221-228,I0006,共9页
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as... Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells. 展开更多
关键词 Solar cells PEROVSKITE CsPbI_(3) Carbon electrodes OXALATE
下载PDF
Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti_(3)C_(2)T_(x)MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs
5
作者 Yihui Li Juan Xie +10 位作者 Ruofei Wang Shugang Min Zewen Xu Yangjian Ding Pengcheng Su Xingmin Zhang Liyu Wei Jing‑Feng Li Zhaoqiang Chu Jingyu Sun Cheng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期394-414,共21页
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion... Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics. 展开更多
关键词 Phosphorene Nanopiezocomposite Piezo-electrochemical coupling Membrane electrode assembly Lithium-ion storage
下载PDF
Flexible capacitive pressure sensor based on interdigital electrodes with porous microneedle arrays for physiological signal monitoring
6
作者 Jiahui Xu Minghao Wang +9 位作者 Minyi Jin Siyan Shang Chuner Ni Yili Hu Xun Sun Jun Xu Bowen Ji Le Li Yuhua Cheng Gaofeng Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期18-31,共14页
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab... Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer. 展开更多
关键词 Capacitive pressure sensor Microneedle array Porous PDMS Interdigital electrode
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes
7
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
8
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics Constant potential method electrode potential
下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
9
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Membrane electrode assembly
下载PDF
Single atom Cu-N-C catalysts for the electro-reduction of CO_(2) to CO assessed by rotating ring-disc electrode
10
作者 S.Pérez-Rodríguez M.Gutiérrez-Roa +6 位作者 C.Giménez-Rubio D.Ríos-Ruiz P.Arévalo-Cid M.V.Martínez-Huerta A.Zitolo M.J.Lázaro D.Sebastián 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期169-182,I0004,共15页
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c... The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR. 展开更多
关键词 Cu-N-C Carbon xerogel Rotating ring disc electrode Carbon dioxide reduction reaction Carbon monoxide
下载PDF
Plasma density enhancement in radio-frequency hollow electrode discharge
11
作者 贺柳良 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期44-51,共8页
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s... The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes. 展开更多
关键词 RF capacitively coupled plasma sources plasma density enhancement hollow cathodeeffect hollow electrode
下载PDF
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
12
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Recent progress of self-supported air electrodes for flexible Zn-air batteries
13
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction Self-supported air electrodes Flexible zinc-air batteries
下载PDF
A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting
14
作者 Jieqiong Li Ting Ouyang +3 位作者 Lu Liu Shu Jiang Yongchao Huang M.-Sadeeq Balogun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期368-376,I0010,共10页
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ... Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture. 展开更多
关键词 Thick electrodes Carbon nanotubes Li-ion diffusion co-efficient Vacuum filtration technique High areal capacity Lithium-ion batteries
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
15
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Hollow cathode effect in radio frequency hollow electrode discharge in argon
16
作者 贺柳良 何锋 欧阳吉庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期496-502,共7页
Radio frequency capacitively coupled plasma source(RF-CCP)with a hollow electrode can increase the electron density through the hollow cathode effect(HCE),which offers a method to modify the spatial profiles of the pl... Radio frequency capacitively coupled plasma source(RF-CCP)with a hollow electrode can increase the electron density through the hollow cathode effect(HCE),which offers a method to modify the spatial profiles of the plasma density.In this work,the variations of the HCE in one RF period are investigated by using a two-dimensional particle-in-cell/Monte-Carlo collision(PIC/MCC)model.The results show that the sheath electric field,the sheath potential drop,the sheath thickness,the radial plasma bulk width,the electron energy distribution function(EEDF),and the average electron energy in the cavity vary in one RF period.During the hollow electrode sheath's expansion phase,the secondary electron heating and sheath oscillation heating in the cavity are gradually enhanced,and the frequency of the electron pendular motion in the cavity gradually increases,hence the HCE is gradually enhanced.However,during the hollow electrode sheath's collapse phase,the secondary electron heating is gradually attenuated.In addition,when interacting with the gradually collapsed hollow electrode sheaths,high-energy plasma bulk electrons in the cavity will lose some energy.Furthermore,the frequency of the electron pendular motion in the cavity gradually decreases.Therefore,during the hollow electrode sheath's collapse phase,the HCE is gradually attenuated. 展开更多
关键词 hollow cathode effect radio frequency hollow electrode particle-in-cell/Monte-Carlo collision(PIC/MCC)model
下载PDF
Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions
17
作者 Shuang Huang Shantao Zheng +9 位作者 Mengyi He Chuanjie Yao Xinshuo Huang Zhengjie Liu Qiangqiang Ouyang Jing Liu Feifei Wu Hang Gao Xi Xie Hui-jiuan Chen 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期88-103,共16页
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio... Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health. 展开更多
关键词 Multiplexed microfilament electrode cluster Physiological ion sensing Subcutaneous and brain experiment Wearable platform for multi-ion detection Continuous real-time monitoring system
下载PDF
Micro-nano structural electrode architecture for high power energy storage 被引量:3
18
作者 Xin Chao Chengzhan Yan +2 位作者 Huaping Zhao Zhijie Wang Yong Lei 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期1-6,共6页
The necessity and superiorities of micro-nano structural electrodes toward high power:Electrochemical energy storage(EES)technologies have achieved great success in portable electronics and electric vehicles owing to ... The necessity and superiorities of micro-nano structural electrodes toward high power:Electrochemical energy storage(EES)technologies have achieved great success in portable electronics and electric vehicles owing to their environmental friendliness and cost effectiveness.With the promotional concepts such as the Internet of Things and ultra-high efficiency self-powered systems in recent years,there are substantial demand for superior EES systems,including but not limited to high-performance,miniaturization and multifunction[1−4].In a particular EES cell,active materials are carried by electrodes as the basic building blocks of energy storage or release.Material innovation(includes composition,structure,size and morphology)has revealed remarkable energy density,power density and lifespan for associated devices in the lab setting of low mass loading slurry-coating electrodes[5]. 展开更多
关键词 STRUCTURAL power electrode
下载PDF
Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries 被引量:3
19
作者 Jungeun Lee Hyeonsoo Lee +5 位作者 Cheol Bak Youngsun Hong Daeha Joung Jeong Beom Ko Yong Min Lee Chanhoon Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期110-121,共12页
Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utili... Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries. 展开更多
关键词 Thick electrodes Hydrophilic binder SULFONATION Aqueous zinc-ion batteries High areal capacity
下载PDF
Boosting Pseudocapacitive Behavior of Supercapattery Electrodes by Incorporating a Schottky Junction for Ultrahigh Energy Density 被引量:1
20
作者 Selvaraj Seenivasan Kyu In Shim +4 位作者 Chaesung Lim Thangavel Kavinkumar Amarnath T.Sivagurunathan Jeong Woo Han Do-Heyoung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期15-35,共21页
Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not m... Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes.In the present study,a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism.The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition.The Schottky junction accelerates and decelerates the diffusion of OH-/K+ions during the charging and discharging processes,respectively,to improve the pseudocapacitive behavior.The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g^(-1)at 2 A g^(-1)matches almost that of the positive electrode’s 2,795 C g^(-1)at 3 A g^(-1).As a result,with the equivalent contribution from the positive and negative electrodes,an energy density of 236.1 Wh kg^(-1)is achieved at a power density of 921.9 W kg^(-1)with a total active mass of 15 mg cm-2.This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density,thus,offering a route for further advances in electrochemical energy storage and conversion processes. 展开更多
关键词 PSEUDO-CAPACITANCE Negative electrode Supercapattery Atomic layer deposition Energy density
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部