Beginning from the formation of amorphous alloy film and its use of proAnse, this paper obtains the Ni-S amorphous alloy film by electroplating method using a bath containing Na2S2O3, and considers the deposition cond...Beginning from the formation of amorphous alloy film and its use of proAnse, this paper obtains the Ni-S amorphous alloy film by electroplating method using a bath containing Na2S2O3, and considers the deposition conditions in detail. The composition of Ni-S alloy film changes with the cathodic current density, Na2S2O3 content in the bath solution and bath pH, but the structure of the film is detendned by the sulphur content in the deposit. X-ray diffraction (XRD) patterns show that films containing about 15-30% sulphur consist of amorphous alloy. In addition, the process of Ni-S alloy film deposition and the relation between the plating conditions and deposits were studied.展开更多
In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between...In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between 0,1,2,5,and 10,the microstructure transitions from a dendritic structure to a hypo-eutectic structure as the Mo content increases from 0 to 5wt.%.Moreover,as the Mo content increases from 0 to 10wt.%,the distribution of theμ-phase shifts from being individually dispersed to forming aggregates,and its volume fraction rises from 0.5%to 7.9%.Notably,theμ-phase evolves into an eutectic microstructure,which helps in minimizing the segregation of elements.This change is accompanied by a substantial enhancement in mechanical properties;specifically,the compressive yield strength at room temperature increases from 350 MPa to 646 MPa,indicating a significant 85%increase.Similarly,the microhardness increases from 230 HV to 304 HV.Molecular dynamics simulations further reveal that the strengthening mechanism of Ni-42W-10Co-x Mo alloys is Mo-induced solid solution strengthening and precipitation strengthening.展开更多
Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si allo...Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si alloy has been a problem for many years.In this study,the effect of deep cryogenic treatment(DCT)on the microstructure and mechanical properties of Al-12Si-4Cu-2Ni-Mg alloy with addition of Al-Ti-C-B master alloy was fully investigated.Results show that the average grain size of the alloy is greatly reduced from 0.92 mm to 0.50 mm,and the eutectic Si and Al7Cu4Ni precipitates are spheroidized and refined in Al-12Si-4Cu-2Ni-Mg after DCT for 24 h and aging treatment.Thereby these changes of microstructures result in a significant increment of about 22.5%in elongation and a slight enhancement of about 6.8%in tensile strength.Moreover,the refinement of microstructure also significantly improves the fatigue life of the alloy.展开更多
The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation ene...The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation energy, Q, was calculated and the hot compression constitutive equation was established. The processing maps of the alloy were constructed based on the experiment data and the forging process parameters were then optimized based on the generated maps for forging process determination. The flow behavior and the microstructural mechanism of the alloy were studied. The flow stress of the Cu-Ni-Si-P alloy increases with increasing strain rate and decreasing deformation temperature, and the dynamic recrystallization temperature of alloy is around 700 ℃. The hot deformation activation energy for dynamic recrystallization is determined as 485.6 kJ/mol. The processing maps for the alloy obtained at strains of 0.3 and 0.5 were used to predict the instability regimes occurring at the strain rate more than 1 s-1 and low temperature (〈650 ℃). The optimum range for the alloy hot deformation processing in the safe domain obtained from the processing map is 750-800 ℃ at the strain rate of 0.01-0.1 s i The characteristic microstructures predicted from the processing map agree well with the results of microstructural observations.展开更多
An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkali...An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resol...We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase.展开更多
The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, co...The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, cold rolled by 70 % reduction in thickness, and then aged at 400, 450 and 500 ℃for various times. The variation in tensile strength and electrical conductivity of the alloy was measured as a function of the aging time. The results show the peak strength value of 665 MPa for the alloy aged at 450 ℃ for 2 h. However, the electrical conductivity is observed to reach a maximum of 47 % IACS aged at 450℃for 8 h. OM, SEM, and TEM were used for microstructural inspection of the alloy. Precipitation occurs preferentially at deformation bands in the cold-rolled alloy. Properties behavior is discussed in the light of microstructural features.展开更多
Age hardening in Cu-3.2Ni-0.75Si (wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-l.ONi-0.25Si (wt pct)...Age hardening in Cu-3.2Ni-0.75Si (wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-l.ONi-0.25Si (wt pct) alloy. On other hand an immediate increase of the yield strength characterizes the aging of the alloy. This is followed by the regions of constant yield strength and further by a peak. The microstructure of the alloy was studied by, means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Spinodal decomposition takes place followed by nucleation of the ordering coherent (Cu,Ni)3Si particles, further precipitation annealing coherent δ-Ni2Si nucleated within the (Cu,Ni)3Si particle. Any change of the yield strength can be described by an adequate change of the structure in the sample. The nature of the aging curves with a 'plateau' is discussed. The formulas of Ashby and Labusch can be used to explain the precipitation.展开更多
The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electri...The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electric conductivity during aging were established for Cu-Ni-Si alloys,on the basis of linear relationship between the electric conductivity and the volume fraction of precipitates,and the calculation results coincide well with the experiment ones.The transformation kinetics curves were established to characterize the aging process.The characteristics of precipitates in the supersaturated solid solution alloy aged at 723 K were established,and the results show that the precipitates areβ-Ni3Si andδ-Ni2Si phases.展开更多
High undercooling up to 392 K was achieved in eutectic Ni70.2Si29.8 alloy melt by using glass fluxing combined with cyclic superheating. A small quantity of amorphous phase was obtained in bulk eutectic Ni70.2Si29.8 a...High undercooling up to 392 K was achieved in eutectic Ni70.2Si29.8 alloy melt by using glass fluxing combined with cyclic superheating. A small quantity of amorphous phase was obtained in bulk eutectic Ni70.2Si29.8 alloy when undercooling exceeds 240 K under slow cooling conditions (about 1 K/s). The amorphous phase was confirmed by high-resolution transmission electron microscopy and differential scanning calorimetry.展开更多
The effects of trace boron and cerium addition on microstructures and properties of high-strength and high-conductivity Cu-Ni-Si alloys were studied. The results showed that the recrystallization starting temperature ...The effects of trace boron and cerium addition on microstructures and properties of high-strength and high-conductivity Cu-Ni-Si alloys were studied. The results showed that the recrystallization starting temperature of Cu-Ni-Si alloy was greatly raised by adding trace Ce and B, which resulted in that the recrystallization of alloy did not happen until the aging strengthening peak was reached. Thus, the good strengthening effect contributed by both precipitation and cold working was obtained, and not only the peak strength was obviously increased but also the strength peak and conductivity peak appeared at the same aging temperature. The trace addition of Ce and B makes the alloys achieve an excellent combination of high strength and high conductivity.展开更多
To improve the surface properties of AZ91 magnesium alloy, Ni-SiC nanocomposite coatings with various SiC contents were pulse electrodeposited in modified Watts baths containing SiC nano-particles with the concentrati...To improve the surface properties of AZ91 magnesium alloy, Ni-SiC nanocomposite coatings with various SiC contents were pulse electrodeposited in modified Watts baths containing SiC nano-particles with the concentration of 0-15 g/L. The morphology of the coatings was studied by scanning electron microscope (SEM). The SiC content of the coatings was measured by energy dispersive spectroscopy (EDS) analyzer. Microhardness measurement of the coatings showed up to 600% enhancement for the sample produced from the bath with 15 g/L SiC. The corrosion behavior of the coated AZ91 alloy was investigated by potentiodynamic polarization method. The results reveal a significant improvement in the corrosion resistance, that is, the corrosion current density decreases from 0.13 mA/cm2 for uncoated specimen to 1.74x10-6 mA/cm2 for the sample coated from the bath containing 15 g/L SiC and the corrosion potential increases from -1.6 V for uncoated specimen to -0.31 V for the sample coated from the bath. The wear resistance of both coated and uncoated samples was evaluated by pin-on-disc tribotester. The results show that the wear volume loss of coated sample is 8 times less than the bare alloy.展开更多
Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The...Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1).展开更多
文摘Beginning from the formation of amorphous alloy film and its use of proAnse, this paper obtains the Ni-S amorphous alloy film by electroplating method using a bath containing Na2S2O3, and considers the deposition conditions in detail. The composition of Ni-S alloy film changes with the cathodic current density, Na2S2O3 content in the bath solution and bath pH, but the structure of the film is detendned by the sulphur content in the deposit. X-ray diffraction (XRD) patterns show that films containing about 15-30% sulphur consist of amorphous alloy. In addition, the process of Ni-S alloy film deposition and the relation between the plating conditions and deposits were studied.
基金financially supported by the National Natural Science Foundation of China(Grant No.51771016)。
文摘In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between 0,1,2,5,and 10,the microstructure transitions from a dendritic structure to a hypo-eutectic structure as the Mo content increases from 0 to 5wt.%.Moreover,as the Mo content increases from 0 to 10wt.%,the distribution of theμ-phase shifts from being individually dispersed to forming aggregates,and its volume fraction rises from 0.5%to 7.9%.Notably,theμ-phase evolves into an eutectic microstructure,which helps in minimizing the segregation of elements.This change is accompanied by a substantial enhancement in mechanical properties;specifically,the compressive yield strength at room temperature increases from 350 MPa to 646 MPa,indicating a significant 85%increase.Similarly,the microhardness increases from 230 HV to 304 HV.Molecular dynamics simulations further reveal that the strengthening mechanism of Ni-42W-10Co-x Mo alloys is Mo-induced solid solution strengthening and precipitation strengthening.
基金financially supported by Shandong Province Aluminum Manufacturing and Application Innovation and Entrepreneurship Community projectShandong Province key Research and Development Plan(2021ZLGX01,2021SFGC1001,2023CXPT024)Shandong Province Youth Taishan project。
文摘Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si alloy has been a problem for many years.In this study,the effect of deep cryogenic treatment(DCT)on the microstructure and mechanical properties of Al-12Si-4Cu-2Ni-Mg alloy with addition of Al-Ti-C-B master alloy was fully investigated.Results show that the average grain size of the alloy is greatly reduced from 0.92 mm to 0.50 mm,and the eutectic Si and Al7Cu4Ni precipitates are spheroidized and refined in Al-12Si-4Cu-2Ni-Mg after DCT for 24 h and aging treatment.Thereby these changes of microstructures result in a significant increment of about 22.5%in elongation and a slight enhancement of about 6.8%in tensile strength.Moreover,the refinement of microstructure also significantly improves the fatigue life of the alloy.
基金Project(51101052) supported by the National Natural Science Foundation of China
文摘The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation energy, Q, was calculated and the hot compression constitutive equation was established. The processing maps of the alloy were constructed based on the experiment data and the forging process parameters were then optimized based on the generated maps for forging process determination. The flow behavior and the microstructural mechanism of the alloy were studied. The flow stress of the Cu-Ni-Si-P alloy increases with increasing strain rate and decreasing deformation temperature, and the dynamic recrystallization temperature of alloy is around 700 ℃. The hot deformation activation energy for dynamic recrystallization is determined as 485.6 kJ/mol. The processing maps for the alloy obtained at strains of 0.3 and 0.5 were used to predict the instability regimes occurring at the strain rate more than 1 s-1 and low temperature (〈650 ℃). The optimum range for the alloy hot deformation processing in the safe domain obtained from the processing map is 750-800 ℃ at the strain rate of 0.01-0.1 s i The characteristic microstructures predicted from the processing map agree well with the results of microstructural observations.
基金Project(20120407)supported by the Science and Technology Key Development Plan of Jilin Province,China
文摘An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.
基金This work was financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0006-0120)the National Key R&D Program of China(No.2021YFB3700402)the National Natural Science Foundation of China(Nos.52074092 and 52274330).
文摘We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase.
基金supported by the Project of National "863"Foundation of China(No.2006AA03Z522)Science and Technology of Beijing(No.10231103)
文摘The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, cold rolled by 70 % reduction in thickness, and then aged at 400, 450 and 500 ℃for various times. The variation in tensile strength and electrical conductivity of the alloy was measured as a function of the aging time. The results show the peak strength value of 665 MPa for the alloy aged at 450 ℃ for 2 h. However, the electrical conductivity is observed to reach a maximum of 47 % IACS aged at 450℃for 8 h. OM, SEM, and TEM were used for microstructural inspection of the alloy. Precipitation occurs preferentially at deformation bands in the cold-rolled alloy. Properties behavior is discussed in the light of microstructural features.
基金supported by the National Natural Science Foundation of China under contract No.50071026.
文摘Age hardening in Cu-3.2Ni-0.75Si (wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-l.ONi-0.25Si (wt pct) alloy. On other hand an immediate increase of the yield strength characterizes the aging of the alloy. This is followed by the regions of constant yield strength and further by a peak. The microstructure of the alloy was studied by, means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Spinodal decomposition takes place followed by nucleation of the ordering coherent (Cu,Ni)3Si particles, further precipitation annealing coherent δ-Ni2Si nucleated within the (Cu,Ni)3Si particle. Any change of the yield strength can be described by an adequate change of the structure in the sample. The nature of the aging curves with a 'plateau' is discussed. The formulas of Ashby and Labusch can be used to explain the precipitation.
基金Project(2006AA03Z517) supported by the National High-tech Research and Development Program of ChinaProject(08MX15) supported by the Mittal Programs of Central South University, China
文摘The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electric conductivity during aging were established for Cu-Ni-Si alloys,on the basis of linear relationship between the electric conductivity and the volume fraction of precipitates,and the calculation results coincide well with the experiment ones.The transformation kinetics curves were established to characterize the aging process.The characteristics of precipitates in the supersaturated solid solution alloy aged at 723 K were established,and the results show that the precipitates areβ-Ni3Si andδ-Ni2Si phases.
基金supported financially by the National Natural Science Foundation of China (No. 50395103)the Doctorate Foundation of North western Poly technical University (CX200506)
文摘High undercooling up to 392 K was achieved in eutectic Ni70.2Si29.8 alloy melt by using glass fluxing combined with cyclic superheating. A small quantity of amorphous phase was obtained in bulk eutectic Ni70.2Si29.8 alloy when undercooling exceeds 240 K under slow cooling conditions (about 1 K/s). The amorphous phase was confirmed by high-resolution transmission electron microscopy and differential scanning calorimetry.
基金the International Science and Technology Cooperation Project of the Science and Technology Ministry of China (2006DFB53050)
文摘The effects of trace boron and cerium addition on microstructures and properties of high-strength and high-conductivity Cu-Ni-Si alloys were studied. The results showed that the recrystallization starting temperature of Cu-Ni-Si alloy was greatly raised by adding trace Ce and B, which resulted in that the recrystallization of alloy did not happen until the aging strengthening peak was reached. Thus, the good strengthening effect contributed by both precipitation and cold working was obtained, and not only the peak strength was obviously increased but also the strength peak and conductivity peak appeared at the same aging temperature. The trace addition of Ce and B makes the alloys achieve an excellent combination of high strength and high conductivity.
文摘To improve the surface properties of AZ91 magnesium alloy, Ni-SiC nanocomposite coatings with various SiC contents were pulse electrodeposited in modified Watts baths containing SiC nano-particles with the concentration of 0-15 g/L. The morphology of the coatings was studied by scanning electron microscope (SEM). The SiC content of the coatings was measured by energy dispersive spectroscopy (EDS) analyzer. Microhardness measurement of the coatings showed up to 600% enhancement for the sample produced from the bath with 15 g/L SiC. The corrosion behavior of the coated AZ91 alloy was investigated by potentiodynamic polarization method. The results reveal a significant improvement in the corrosion resistance, that is, the corrosion current density decreases from 0.13 mA/cm2 for uncoated specimen to 1.74x10-6 mA/cm2 for the sample coated from the bath containing 15 g/L SiC and the corrosion potential increases from -1.6 V for uncoated specimen to -0.31 V for the sample coated from the bath. The wear resistance of both coated and uncoated samples was evaluated by pin-on-disc tribotester. The results show that the wear volume loss of coated sample is 8 times less than the bare alloy.
基金Funded by the National Key R&D Program of China(Nos.2021YFB3700804,2021YFB3700803)Shaanxi Provincial Innovation Capability Support Plan(No.2023KJXX-091)。
文摘Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1).