Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg...Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride).展开更多
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ...Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.展开更多
Aqueous rechargeable batteries using abundant multi-ion cations have receivedincreasing attention in the energy storage field for their high safety and low cost.Layered double hydroxides(LDHs)possess a two-dimensional...Aqueous rechargeable batteries using abundant multi-ion cations have receivedincreasing attention in the energy storage field for their high safety and low cost.Layered double hydroxides(LDHs)possess a two-dimensional structure andexhibit great potential as cathodes for multi-ion intercalation.However,theinsufficient active sites of LDHs result in low capacities in the discharging process.Interestingly,the LDHs after the deprotonation process exhibit favorable electrochemicalperformance of multi-cation intercalation.The deprotonation process ofLDHs has been widely found in the oxygen evolution reaction and energy storagefield,where LDHs lose H in laminates and converts to deprotonatedγ-phaseMOOHs(MOOs).Herein,we take a comprehensive overview of the dynamicsstructure transformation of the deprotonation process of LDHs.Furthermore,thedevelopment of advanced aqueous battery cathode and metal battery anode basedon deprotonated LDHs for energy storage is explored and summarized.Finally,theperspective of deprotonated LDHs in the energy storage field is discussed.展开更多
Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combi...Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices.展开更多
The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction(OER)performance,which has become an effective strategy for constructing the catalytic active phase.However,...The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction(OER)performance,which has become an effective strategy for constructing the catalytic active phase.However,it remains a challenge to understand the mechanisms of reconstruction and to accomplish it fast and deeply.Here,we reported a photo-promoted rapid reconstruction(PRR)process on Ag nanoparticle-loaded amorphous Ni-Fe hydroxide nanosheets on carbon cloth for enhanced OER.The photogenerated holes generated by Ag in conjunction with the anodic potential contributed to a thorough reconstruction of the amorphous substrate.The valence state of unsaturated coordinated Fe atoms,which serve as active sites,is significantly increased,while the corresponding crystalline substrate shows little change.The different structural evolutions of amorphous and crystalline substrates during reconstruction lead to diverse pathways of OER.This PRR utilizing loaded noble metal nanoparticles can accelerate the generation of active species in the substrate and increase the electrical conductivity,which provides a new inspiration to develop efficient catalysts via reconstruction strategies.展开更多
Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)...Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts.展开更多
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e...Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.展开更多
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc...Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.展开更多
Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of the...Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of these LDHs is closely related to their morphology and electronic structure.However,there is a lack of theory on how to control reaction conditions to regulate the morphologies.In this paper,the growth mechanism of LDH prepared in different solvents is thoroughly studied.Consequently,the Co/Ni-LDHs exhibiting a 3D hierarchical flower-like structure were synthesized with normal alcohol as a solvent,meanwhile,the thickness of the LDHs can be controlled by the molecular weight of the normal alcohol.By adjusting the suitable Co/Ni ratio and solvent,the Co/Ni0.050-LDH-Me was synthesized and exhibited excellent OER performance.At 10 mA cm^(-2),the overpotential of Co/Ni0.050-LDH-Me is 307 mV,and the Tafel slope is 76.5 mV dec^(-1).展开更多
A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists ...A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2) inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2) at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1) in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) is as high as 99.5% for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.展开更多
Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul...Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.展开更多
This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction bet...This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.展开更多
Objective: To investigate the clinical value of endodontics patients treated with calcium hydroxide preparation. Methods: The study cases were selected from the endodontics patients who visited our hospital during the...Objective: To investigate the clinical value of endodontics patients treated with calcium hydroxide preparation. Methods: The study cases were selected from the endodontics patients who visited our hospital during the period from January 2022 to December 2023, and 97 cases were randomly selected according to the numerical table method and divided into two groups. There were 49 cases in the control group and 48 cases in the experimental group. The control group received conventional therapy, while the experimental group received treatment with calcium hydroxide preparation, and the clinical value of the two different treatment modalities was observed and analyzed. Results: In the experimental group, 45 out of 48 patients (93.75%) showed effectiveness, compared to 39 out of 49 patients (79.59%) in the control group. The effectiveness rate was significantly higher in the experimental group (P < 0.05). Initially, the VAS scores between the two groups were similar (P > 0.05), but after 1 and 3 months of treatment, the scores decreased in both groups. However, the experimental group had a greater decrease, indicating lower pain levels (P < 0.05). The experimental group had fewer complications (8.33%) compared to the control group (24.49%), with a significant difference (P < 0.05). Satisfaction with treatment was higher in the experimental group (95.83%) compared to the control group (95.83%), resulting in an overall higher satisfaction rate in the experimental group (83.67%;P < 0.05). Conclusion: The treatment effect of endodontics with calcium hydroxide preparation is remarkable, which not only can effectively help patients to relieve their pain and reduce the incidence of complications but also plays an important role in improving patients’ satisfaction with treatment, which is worthwhile to be vigorously promoted in the clinic and learn from it.展开更多
Delivering high areal capacitance(CA)at high rates is crucial but challenging for flexible supercapacitors.CA is the product of areal loading mass(MA)and gravimetric capacitance(CW).Finding and understanding the balan...Delivering high areal capacitance(CA)at high rates is crucial but challenging for flexible supercapacitors.CA is the product of areal loading mass(MA)and gravimetric capacitance(CW).Finding and understanding the balance between MA and CW of supercapacitor materials is significant for designing high-CA electrodes.Herein,we have systematically studied the correlation between MA and CW of the nanosheet arrays of NiCo-layered double hydroxide(NiCo-LDH),which were electrodeposited on carbon cloth with different heights to adjust the MA,accompanied by the interlayer distance regulation to improve the CW.The optimal CW performance is achieved at the best charge transfer kinetics for each of MA series.The NiCo-LDH electrode with the suitable MA(2.58 mg cm^(-2))and the relatively high CW(1918 F g^(-1) at 5 A g^(-1) and 400 F g^(-1) at 150 A g^(-1))present a high CA of 4948 mF cm^(-2) at 12.9 mA cm^(-2) and a record-high 1032 mF cm^(-2) among LDHs-based flexible electrodes at an ultrahigh current density of 387 mA cm^(-2).The corresponding flexible supercapacitor coupled with activated carbon delivers a high energy density of 0.28 mWh cm^(-2) at an ultrahigh power density of 712 mW cm^(-2),showing great potential applications.展开更多
Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivat...Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivation.Here we show a DPC adsorbed layered double hydroxide(DPC-LDH)architecture with enhanced controlled release property and soil distribution.By drip irrigation on cotton,it makes total dosage of DPC reduced from 270 to 90 g/ha,while the frequency decreased from 5 to 2 times.The unique supramolecular interaction is confirmed as the basis of controlled release behavior.Moreover,except for the physical resistance to the sedimentation brought by the lamellar LDH,the enhanced electrostatic interaction makes DPC-LDH the dominant distribution in soil.It improves the efficiency of DPC molecules absorbed by cotton plants and greatly saves the inputs in labor and chemicals.This method is expected to achieve the yield increase and agricultural sustainability by energy saving and emission reduction.展开更多
Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s...Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.展开更多
ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered d...ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed.展开更多
The research progress on the application of magnesium compounds (magnesium hydroxide,light calcined magnesia,magnesium chloride,sea water,brine,dry brine,etc.) which were represented by magnesium hydroxide in the wast...The research progress on the application of magnesium compounds (magnesium hydroxide,light calcined magnesia,magnesium chloride,sea water,brine,dry brine,etc.) which were represented by magnesium hydroxide in the wastewater treatment filed was comprehensively commentated.Meanwhile,the prospects of application were discussed.Considering the magnesium resources in China were characterized with rich classes,abundant reserves,vast distribution and high quality,it's important to make great efforts to research and exploit magnesium products,especially the exploitation of their meticulous use way.It had the practical significance for the sustainable development of economy in China.展开更多
A novel type of composite electrode based on nmltiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodlcally deposited fiom Co(NO3)O2 solutio...A novel type of composite electrode based on nmltiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodlcally deposited fiom Co(NO3)O2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F/g in 1 mol/L KOH. To characterize the cobalt hydroxide nanocomposite electrode, a charge-discharge cycling test, cyclic voltammetry, and an impedance test were done. This cobalt hydroxide composite exhibiting excellent pseudo-capacitive behavior (i.c. high reversibility, high specific capacitance, low impedance), was demonstrated to be a candidate for the application of electrochemical supercapacitors. A combined capacitor consisting of cobalt hydroxide composite as a cathode and activated carbon fiber as an anode was reported. The electrochemical pcrformance of the combined capacitor was characterized by cyclic voltammetry and a dc charge/discharge test. The combined capacitor showed ideal capacitor behavior with an extended operating voltage of 1.4 V. According to the extended operating voltage, the energy density of the combined capacitor at a current density of 100 mA/cm^2 was found to be 11 Wh/kg. The combined capacitor exhibited high-energy density and stable power characteristics,展开更多
基金supported by the National Natural Science Foundation of China(NSFC,52271073)the Sichuan Science and Technology Program(2024NSFJQ0034)+3 种基金the Central Government Guided Special Program(No.2021ZYD0049)the Young Elite Scientists Sponsorship Program by CAST(YESS,2018QNRC001)the GDPH Supporting Fund for Talent Program(KY0120220137)the Scientific and Technological Projects of Guangzhou,China(202002030283).
文摘Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride).
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.
基金support from the National Natural Science Foundation of China(22090031,22090030,22288102),Qinghai Salt Lake Industry Group Co.,Ltd.
文摘Aqueous rechargeable batteries using abundant multi-ion cations have receivedincreasing attention in the energy storage field for their high safety and low cost.Layered double hydroxides(LDHs)possess a two-dimensional structure andexhibit great potential as cathodes for multi-ion intercalation.However,theinsufficient active sites of LDHs result in low capacities in the discharging process.Interestingly,the LDHs after the deprotonation process exhibit favorable electrochemicalperformance of multi-cation intercalation.The deprotonation process ofLDHs has been widely found in the oxygen evolution reaction and energy storagefield,where LDHs lose H in laminates and converts to deprotonatedγ-phaseMOOHs(MOOs).Herein,we take a comprehensive overview of the dynamicsstructure transformation of the deprotonation process of LDHs.Furthermore,thedevelopment of advanced aqueous battery cathode and metal battery anode basedon deprotonated LDHs for energy storage is explored and summarized.Finally,theperspective of deprotonated LDHs in the energy storage field is discussed.
基金financially supported by 2024 Gyeongbuk Green Environment Support Center。
文摘Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices.
基金This work was supported by the National Natural Science Foundation of China(52073008,52272181)the China Postdoctoral Science Foundation(2023T160036).
文摘The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction(OER)performance,which has become an effective strategy for constructing the catalytic active phase.However,it remains a challenge to understand the mechanisms of reconstruction and to accomplish it fast and deeply.Here,we reported a photo-promoted rapid reconstruction(PRR)process on Ag nanoparticle-loaded amorphous Ni-Fe hydroxide nanosheets on carbon cloth for enhanced OER.The photogenerated holes generated by Ag in conjunction with the anodic potential contributed to a thorough reconstruction of the amorphous substrate.The valence state of unsaturated coordinated Fe atoms,which serve as active sites,is significantly increased,while the corresponding crystalline substrate shows little change.The different structural evolutions of amorphous and crystalline substrates during reconstruction lead to diverse pathways of OER.This PRR utilizing loaded noble metal nanoparticles can accelerate the generation of active species in the substrate and increase the electrical conductivity,which provides a new inspiration to develop efficient catalysts via reconstruction strategies.
基金supported by the Research Grants Council(26206115,16304821 and 16309418)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(SMSEGL20SC01)+2 种基金the Innovation and Technology Commission(grant no.ITC-CNERC14EG03)of the Hong Kong Special Administrative Regionthe Hong Kong Postdoctoral Fellowship Scheme(HKUST PDFS2021-4S12 and HKUST PDFS2021-6S08)the support from the Shenzhen fundamental research funding(JCYJ20210324115809026,20200925154115001,JCYJ20200109141216566)。
文摘Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts.
基金supported by the Inner Mongolia R&D Program Plan(2021ZD0042,2021EEDSCXSFQZD006)the National Natural Science Foundation of China(21902123)the Natural Science Basic Research Program of Shaanxi(2023-JC-ZD-22)。
文摘Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.
基金supported by the National Natural Science Foundation of China(52002111)the Natural Science Foundation of Hebei Province(E2024208054,B2022208006)Science Foundation of University of Hebei Province(JZX2024025).
文摘Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of these LDHs is closely related to their morphology and electronic structure.However,there is a lack of theory on how to control reaction conditions to regulate the morphologies.In this paper,the growth mechanism of LDH prepared in different solvents is thoroughly studied.Consequently,the Co/Ni-LDHs exhibiting a 3D hierarchical flower-like structure were synthesized with normal alcohol as a solvent,meanwhile,the thickness of the LDHs can be controlled by the molecular weight of the normal alcohol.By adjusting the suitable Co/Ni ratio and solvent,the Co/Ni0.050-LDH-Me was synthesized and exhibited excellent OER performance.At 10 mA cm^(-2),the overpotential of Co/Ni0.050-LDH-Me is 307 mV,and the Tafel slope is 76.5 mV dec^(-1).
基金National Natural Science Foundation of China,Grant/Award Numbers:21978160,52003300,52373087Shaanxi Province Natural Science Foundation,Grant/Award Number:2024JC‐YBMS‐131。
文摘A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2) inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2) at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1) in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) is as high as 99.5% for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.
文摘Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.
文摘This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.
文摘Objective: To investigate the clinical value of endodontics patients treated with calcium hydroxide preparation. Methods: The study cases were selected from the endodontics patients who visited our hospital during the period from January 2022 to December 2023, and 97 cases were randomly selected according to the numerical table method and divided into two groups. There were 49 cases in the control group and 48 cases in the experimental group. The control group received conventional therapy, while the experimental group received treatment with calcium hydroxide preparation, and the clinical value of the two different treatment modalities was observed and analyzed. Results: In the experimental group, 45 out of 48 patients (93.75%) showed effectiveness, compared to 39 out of 49 patients (79.59%) in the control group. The effectiveness rate was significantly higher in the experimental group (P < 0.05). Initially, the VAS scores between the two groups were similar (P > 0.05), but after 1 and 3 months of treatment, the scores decreased in both groups. However, the experimental group had a greater decrease, indicating lower pain levels (P < 0.05). The experimental group had fewer complications (8.33%) compared to the control group (24.49%), with a significant difference (P < 0.05). Satisfaction with treatment was higher in the experimental group (95.83%) compared to the control group (95.83%), resulting in an overall higher satisfaction rate in the experimental group (83.67%;P < 0.05). Conclusion: The treatment effect of endodontics with calcium hydroxide preparation is remarkable, which not only can effectively help patients to relieve their pain and reduce the incidence of complications but also plays an important role in improving patients’ satisfaction with treatment, which is worthwhile to be vigorously promoted in the clinic and learn from it.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1500900,2018YFA0209103)the National Natural Science Foundation of China(Nos.21832003,52071174,21972061,22369020)+1 种基金the Natural Science Foundation of Jiangsu Province Major Project(No.BK20212005)the Project funded by China Postdoctoral Science Foundation(No.2023M732352).
文摘Delivering high areal capacitance(CA)at high rates is crucial but challenging for flexible supercapacitors.CA is the product of areal loading mass(MA)and gravimetric capacitance(CW).Finding and understanding the balance between MA and CW of supercapacitor materials is significant for designing high-CA electrodes.Herein,we have systematically studied the correlation between MA and CW of the nanosheet arrays of NiCo-layered double hydroxide(NiCo-LDH),which were electrodeposited on carbon cloth with different heights to adjust the MA,accompanied by the interlayer distance regulation to improve the CW.The optimal CW performance is achieved at the best charge transfer kinetics for each of MA series.The NiCo-LDH electrode with the suitable MA(2.58 mg cm^(-2))and the relatively high CW(1918 F g^(-1) at 5 A g^(-1) and 400 F g^(-1) at 150 A g^(-1))present a high CA of 4948 mF cm^(-2) at 12.9 mA cm^(-2) and a record-high 1032 mF cm^(-2) among LDHs-based flexible electrodes at an ultrahigh current density of 387 mA cm^(-2).The corresponding flexible supercapacitor coupled with activated carbon delivers a high energy density of 0.28 mWh cm^(-2) at an ultrahigh power density of 712 mW cm^(-2),showing great potential applications.
基金supported by the National Key R&D Program of China(2021YFA0716704)the Young Scientists Fund of the National Natural Science Foundation of China(No.22208372).
文摘Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivation.Here we show a DPC adsorbed layered double hydroxide(DPC-LDH)architecture with enhanced controlled release property and soil distribution.By drip irrigation on cotton,it makes total dosage of DPC reduced from 270 to 90 g/ha,while the frequency decreased from 5 to 2 times.The unique supramolecular interaction is confirmed as the basis of controlled release behavior.Moreover,except for the physical resistance to the sedimentation brought by the lamellar LDH,the enhanced electrostatic interaction makes DPC-LDH the dominant distribution in soil.It improves the efficiency of DPC molecules absorbed by cotton plants and greatly saves the inputs in labor and chemicals.This method is expected to achieve the yield increase and agricultural sustainability by energy saving and emission reduction.
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(07JJ6082)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy in Central South University,China
文摘Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
基金Project(21306041)supported by the National Natural Science Young Foundation of ChinaProject(21271071)supported by the National Natural Science Foundation of ChinaProject(15A076)supported by the Scientific Research Foundation of Hunan Provincial Education Department of China
文摘ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed.
基金Supported by The National Science Research Guidance Plan Project of Education Department in Hebei Province (Z2009110 )The Science & Technology Research and Development Guidance Plan of Baoding City in 2009 (the Second Batch) (09ZF075)The Natural Science Funds of Hebei Province (B2005000105)
文摘The research progress on the application of magnesium compounds (magnesium hydroxide,light calcined magnesia,magnesium chloride,sea water,brine,dry brine,etc.) which were represented by magnesium hydroxide in the wastewater treatment filed was comprehensively commentated.Meanwhile,the prospects of application were discussed.Considering the magnesium resources in China were characterized with rich classes,abundant reserves,vast distribution and high quality,it's important to make great efforts to research and exploit magnesium products,especially the exploitation of their meticulous use way.It had the practical significance for the sustainable development of economy in China.
文摘A novel type of composite electrode based on nmltiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodlcally deposited fiom Co(NO3)O2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F/g in 1 mol/L KOH. To characterize the cobalt hydroxide nanocomposite electrode, a charge-discharge cycling test, cyclic voltammetry, and an impedance test were done. This cobalt hydroxide composite exhibiting excellent pseudo-capacitive behavior (i.c. high reversibility, high specific capacitance, low impedance), was demonstrated to be a candidate for the application of electrochemical supercapacitors. A combined capacitor consisting of cobalt hydroxide composite as a cathode and activated carbon fiber as an anode was reported. The electrochemical pcrformance of the combined capacitor was characterized by cyclic voltammetry and a dc charge/discharge test. The combined capacitor showed ideal capacitor behavior with an extended operating voltage of 1.4 V. According to the extended operating voltage, the energy density of the combined capacitor at a current density of 100 mA/cm^2 was found to be 11 Wh/kg. The combined capacitor exhibited high-energy density and stable power characteristics,